Skip to main content
Log in

Oxygen transfer and gas holdup in airlift bioreactors assembled with helical flow promoters

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Bioreactors can perform biochemical conversions mediated by biocatalysts, such as enzymes, animal cells, plants, and microorganisms. Among several existing models, airlift bioreactors are devices with the low shear environment and good mass transfer with low energy consumption, employed in several biochemical processes. The fluid flow is enabled through air injection by the sparger located at the bioreactor base. Despite its simple geometry compared with the conventional bioreactors, airlift performance can be optimized via geometrical modifications. Therefore, the objective of this work was to evaluate the effects of the addition of helical flow promoters, positioned in the riser and/or downcomer regions of an airlift of concentric tubes measuring the volumetric oxygen coefficient (kLa) and gas holdup. The results obtained by varying the gas flow rate from 1.0 to 4.0 vvm allowed the system evaluation of oxygen transfer and gas holdup. The inclusion of helical flow promoters increased the kLa, reaching up to 23% in oxygen transfer compared to tests without helicoids and up to 14% increase in the gas holdup. The inclusion of helical flow promotors was beneficial for all gas flow rates. Thus, including these flow promoters is an effective strategy to increase the oxygen transfer rate for bioprocess optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.

Abbreviations

A D :

Cross-sectional downcomer area, m2

A I :

Fluid flow impact area, m2

A R :

Cross-sectional riser area, m2

CFD:

Computational fluid dynamics

CI:

Confidence interval

D 1 :

Outer bioreactor diameter, m

D 2 :

Inner bioreactor diameter, m

D 3 :

Outer draft tube diameter, m

D 4 :

Inner draft tube diameter, m

D H :

Helicoid thickness, m

D L :

Oxygen diffusivity in the liquid phase, m2/s

DO:

Dissolved oxygen, %

D R :

Riser diameter, m

H 1 :

Top clearance, m

H 2 :

Draft tube height, m

H 3 :

Bottom clearance, m

H 4 :

Static liquid height, m

H 5 :

Total height, m

H D :

Dispersion height, m

H L :

Height of the liquid, m

k L a :

Volumetric oxygen transfer coefficient, s1

N2 :

Nitrogen

OTR:

Oxygen transfer rates

Q G :

Airflow rate, m3/s

Sh :

Sherwood number

t :

Time, s

U GR :

Gas superficial velocity in the riser, m/s

V :

Volume, m3

V LD :

Interstitial liquid velocities in the riser downcomer, m2/s

V LR :

Interstitial liquid velocities in the riser, m2/s

vvm:

Volumetric air flow rate per minute, m3/min by m3

α :

Significance level

∆E V :

Variation of volumetric expansion, m

ε D :

Downcomer gas holdup

ε G :

Global gas holdup

ε R :

Riser gas holdup

µ :

Dynamic viscosity, kg/ms

ρ :

Liquid specific mass, kg/m3

References

  1. Mandenius C-F (2016) Bioreactors, mandenius. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  2. Cerri MO, Badino AC (2010) Oxygen transfer in three scales of concentric tube airlift bioreactors. Biochem Eng J 51(1–2):40–47. https://doi.org/10.1016/j.bej.2010.04.013

    Article  CAS  Google Scholar 

  3. Fontana RC, Polidoro TA, da Silveira MM (2009) Comparison of stirred tank and airlift bioreactors in the production of polygalacturonases by Aspergillus oryzae. Bioresour Technol 100(19):4493–4498. https://doi.org/10.1016/j.biortech.2008.11.062

    Article  CAS  PubMed  Google Scholar 

  4. Meneses DP et al (2021) Esterase production by Aureobasidium pullulans URM 7059 in stirred tank and airlift bioreactors using residual biodiesel glycerol as substrate. Biochem Eng J 168:107954. https://doi.org/10.1016/j.bej.2021.107954

    Article  CAS  Google Scholar 

  5. Michelin M, de Oliveira-Mota AM, de Polizeli LTM, da Silva DP, Vicente AA, Teixeira JA (2013) Influence of volumetric oxygen transfer coefficient (kLa) on xylanases batch production by Aspergillus niger van Tieghem in stirred tank and internal-loop airlift bioreactors. Biochem Eng J 80:19–26. https://doi.org/10.1016/j.bej.2013.09.002

    Article  CAS  Google Scholar 

  6. Teerapatsakul C, Parra R, Keshavarz T, Chitradon L (2017) Repeated batch for dye degradation in an airlift bioreactor by laccase entrapped in copper alginate. Int Biodeterior Biodegrad 120:52–57. https://doi.org/10.1016/j.ibiod.2017.02.001

    Article  CAS  Google Scholar 

  7. Hu D et al (2020) Multiple draft tubes airlift loop membrane bioreactor as an efficient system for acidic 7-amino cephalosporanic acid (7-ACA) wastewater treatment. Bioresour Technol 304:123014. https://doi.org/10.1016/j.biortech.2020.123014

    Article  CAS  PubMed  Google Scholar 

  8. Marques P, Pinheiro HM, Rosa MF (2007) Cd(II) removal from aqueous solution by immobilised waste brewery yeast in fixed-bed and airlift reactors. Desalination 214(1–3):343–351. https://doi.org/10.1016/j.desal.2006.11.012

    Article  CAS  Google Scholar 

  9. Mirghorayshi M, Zinatizadeh AA, van Loosdrecht M (2021) Simultaneous biodegradability enhancement and high-efficient nitrogen removal in an innovative single stage anaerobic/anoxic/aerobic hybrid airlift bioreactor (HALBR) for composting leachate treatment: process modeling and optimization. Chem Eng J 407:127019. https://doi.org/10.1016/j.cej.2020.127019

    Article  CAS  Google Scholar 

  10. Sobhi M et al (2021) Nutrients recovery from fresh liquid manure through an airlift reactor to mitigate the greenhouse gas emissions of open anaerobic lagoons. J Environ Manag 294:112956. https://doi.org/10.1016/j.jenvman.2021.112956

    Article  CAS  Google Scholar 

  11. Mirghorayshi M, Zinatizadeh AA, Van Loosdrecht M (2018) Evaluating the process performance and potential of a high-rate single airlift bioreactor for simultaneous carbon and nitrogen removal through coupling different pathways from a nitrogen-rich wastewater. Bioresour Technol 260:44–52. https://doi.org/10.1016/j.biortech.2018.03.048

    Article  CAS  PubMed  Google Scholar 

  12. Yang T et al (2021) Investigation of hydrodynamics and mass transfer in an internal loop airlift slurry reactor integrating mixing and separation. Sep Purif Technol 259:118209. https://doi.org/10.1016/j.seppur.2020.118209

    Article  CAS  Google Scholar 

  13. Deendarlianto IS, Majid AI, Pradecta MR, Indarto A, Widyaparaga A (2019) Experimental investigation on the flow behavior during the solid particles lifting in a micro-bubble generator type airlift pump system. Case Stud Therm Eng. 13:100386. https://doi.org/10.1016/j.csite.2018.100386

    Article  Google Scholar 

  14. Chen J, Ruan J-W, Ye J-X, Cheng Z-W, Chen D-Z (2020) Removal of gaseous tetrahydrofuran via a three-phase airlift bioreactor loaded with immobilized cells of GFP-tagged Pseudomonas oleovorans GDT4. Chemosphere 258:127148. https://doi.org/10.1016/j.chemosphere.2020.127148

    Article  CAS  PubMed  Google Scholar 

  15. Xu P et al (2020) Multi-factorial analysis of the removal of dichloromethane and toluene in an airlift packing bioreactor. J Environ Manag 261:109665. https://doi.org/10.1016/j.jenvman.2019.109665

    Article  CAS  Google Scholar 

  16. Cerri MO, Badino AC (2012) Shear conditions in clavulanic acid production by Streptomyces clavuligerus in stirred tank and airlift bioreactors. Bioprocess Biosyst Eng 35(6):977–984. https://doi.org/10.1007/s00449-012-0682-8

    Article  CAS  PubMed  Google Scholar 

  17. Del Carmen-Oliver-Salvador M, Morales-López E, Durán-Páramo E, Orozco-Álvarez C, García-Salas S (2013) Shear rate and microturbulence effects on the synthesis of proteases by Jacaratia mexicana cells cultured in a bubble column, airlift, and stirred tank bioreactors. Biotechnol Bioprocess Eng 18(4):808–818. https://doi.org/10.1007/s12257-012-0736-4

    Article  CAS  Google Scholar 

  18. de Jesus SS, Moreira-Neto J, Maciel-Filho R (2017) Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: a comparative study. Biochem Eng J 118:70–81. https://doi.org/10.1016/j.bej.2016.11.019

    Article  CAS  Google Scholar 

  19. Buffo MM, Corrêa LJ, Esperança MN, Cruz AJG, Farinas CS, Badino AC (2016) Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor. Biochem Eng J 114:130–139. https://doi.org/10.1016/j.bej.2016.07.003

    Article  CAS  Google Scholar 

  20. Yépez-Silva-Santisteban BO, Maugeri-Filho F (2005) Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus. Enzyme Microb Technol 36(5–6):717–724. https://doi.org/10.1016/j.enzmictec.2004.12.008

    Article  CAS  Google Scholar 

  21. Gumery F, Ein-Mozaffari F, Dahman Y (2009) Characteristics of local flow dynamics and macro-mixing in airlift column reactors for reliable design and scale-up. Int J Chem React Eng. https://doi.org/10.2202/1542-6580.2081

    Article  Google Scholar 

  22. Mendes CE, Badino AC (2015) Oxygen transfer in different pneumatic bioreactors containing viscous Newtonian fluids. Chem Eng Res Des 94:456–465. https://doi.org/10.1016/j.cherd.2014.09.002

    Article  CAS  Google Scholar 

  23. Grace JR, Wairegi T, Brophy J (1978) Break-up of drops and bubbles in stagnant media. Can J Chem Eng 56(1):3–8. https://doi.org/10.1002/cjce.5450560101

    Article  CAS  Google Scholar 

  24. Liu J, Zhu C, Fu T, Ma Y (2014) Systematic study on the coalescence and breakup behaviors of multiple parallel bubbles rising in power-law fluid. Ind Eng Chem Res 53(12):4850–4860. https://doi.org/10.1021/ie4037565

    Article  CAS  Google Scholar 

  25. Guo X, Zhou Q, Li J, Chen C (2016) Implementation of an improved bubble breakup model for TFM-PBM simulations of gas-liquid flows in bubble columns. Chem Eng Sci 152:255–266. https://doi.org/10.1016/j.ces.2016.06.032

    Article  CAS  Google Scholar 

  26. Räsänen M, Eerikäinen T, Ojamo H (2016) Characterization and hydrodynamics of a novel helix airlift reactor. Chem Eng Process Process Intensif 108:44–57. https://doi.org/10.1016/j.cep.2016.07.006

    Article  CAS  Google Scholar 

  27. Merchuk JC, Ben-Zvi(Yona) S (1992) A novel approach to the correlation of mass transfer rates in bubble columns with non-Newtonian liquids. Chem Eng Sci 47(13–14):3517–3523. https://doi.org/10.1016/0009-2509(92)85065-J

    Article  CAS  Google Scholar 

  28. Sanjari S, Vahabzadeh F, Naderifar A, Pesaran M (2014) Hydrodynamics and mass transfer coefficients of airlift reactors with net draft tubes of different sizes: Production of cyclodextrin glucanotransferase using Bacillus sp. DSM 2523. Starch/Staerke 66(11–12):935–946. https://doi.org/10.1002/star.201400057

    Article  CAS  Google Scholar 

  29. Gavrilescu M, Roman RV, Efimov V (1993) The volumetric oxygen mass transfer coefficient in antibiotic biosynthesis liquids. Acta Biotechnol 13(1):59–70. https://doi.org/10.1002/abio.370130114

    Article  CAS  Google Scholar 

  30. Chisti Y, Kasper M, Moo-young M (1990) Static mixers. Can J Chem Eng 68:1–6

    Google Scholar 

  31. Luo L, Yuan J, Xie P, Sun J, Guo W (2013) Hydrodynamics and mass transfer characteristics in an internal loop airlift reactor with sieve plates. Chem Eng Res Des 91(12):2377–2388. https://doi.org/10.1016/j.cherd.2013.06.002

    Article  CAS  Google Scholar 

  32. Zhao M, Niranjan K, Davidson JF (1994) Mass transfer to viscous liquids in bubble columns and air-lift reactors: influence of baffles. Chem Eng Sci 49(14):2359–2369. https://doi.org/10.1016/0009-2509(94)E0032-L

    Article  CAS  Google Scholar 

  33. Lukić NL, Šijački IM, Kojić PS, Popović SS, Tekić MN, Petrović DL (2017) Enhanced mass transfer in a novel external-loop airlift reactor with self-agitated impellers. Biochem Eng J 118:53–63. https://doi.org/10.1016/j.bej.2016.11.014

    Article  CAS  Google Scholar 

  34. Zheng Z, Chen Y, Zhan X, Gao M, Wang Z (2018) Mass transfer intensification in a novel airlift reactor assembly with helical sieve plates. Chem Eng J 342(November 2017):61–70. https://doi.org/10.1016/j.cej.2018.01.039

    Article  CAS  Google Scholar 

  35. Särkelä R, Eerikäinen T, Pitkänen JP, Bankar S (2019) Mixing efficiency studies in an airlift bioreactor with helical flow promoters for improved reactor performance. Chem Eng Process Process Intensif 137(February):80–86. https://doi.org/10.1016/j.cep.2019.02.006

    Article  CAS  Google Scholar 

  36. Chisti MY, Moo-Young M (1988) Hydrodynamics and oxygen transfer in pneumatic bioreactor devices. Biotechnol Bioeng 31(5):487–494. https://doi.org/10.1002/bit.260310514

    Article  CAS  PubMed  Google Scholar 

  37. Cerri MO, Nordi-Esperança M, Badino AC, Perencin de Arruda Ribeiro M (2016) A new approach for kLa determination by gassing-out method in pneumatic bioreactors. J Chem Technol Biotechnol 91(12):3061–3069. https://doi.org/10.1002/jctb.4937

    Article  CAS  Google Scholar 

  38. Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Phys Rev 4(4):345–376. https://doi.org/10.1103/PhysRev.4.345

    Article  Google Scholar 

  39. Li X et al (2020) Power-saving airlift bioreactor with helical sieve plates: developmental and performance studies. Chem Eng Res Des 158:1–11. https://doi.org/10.1016/j.cherd.2020.03.014

    Article  CAS  Google Scholar 

  40. Deng Z, Wang T, Zhang N, Wang Z (2010) Gas holdup, bubble behavior and mass transfer in a 5 m high internal-loop airlift reactor with non-Newtonian fluid. Chem Eng J 160(2):729–737. https://doi.org/10.1016/j.cej.2010.03.078

    Article  CAS  Google Scholar 

  41. Esperança MN, Mendes CE, Rodriguez GY, Cerri MO, Béttega R, Badino AC (2019) Average shear rate in airlift bioreactors: searching for the true value. Bioprocess Biosyst Eng 42(6):995–1008. https://doi.org/10.1007/s00449-019-02100-1

    Article  CAS  PubMed  Google Scholar 

  42. Tekić MN et al (2014) Hidrodinamika samo-mešajuće barbotažne kolone sa koncentričnom cevi. Chem Ind Chem Eng Q 20(1):59–69. https://doi.org/10.2298/CICEQ120627102T

    Article  CAS  Google Scholar 

  43. Pi K, Huang L, Li Z, Gao L, Gerson AR (2014) Oxygen mass transfer characteristics in an internal-loop airlift reactor with preset trumpet-shaped riser. Asia–Pac J Chem Eng 9(6):834–844. https://doi.org/10.1002/apj.1831

    Article  CAS  Google Scholar 

  44. Schlötelburg C, Gluz M, Popovic M, Merchuk JC (1999) Characterization of an airlift reactor with helical flow promoters. Can J Chem Eng 77(5):804–810. https://doi.org/10.1002/cjce.5450770504

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the São Paulo State Research Support Foundation (FAPESP, grant 2020/08699-7) and Coordination for the Improvement of Higher-Level Personnel—Brasil (CAPES, Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel O. Cerri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 93 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picão, B.W., Gonçalves, D.O., Ribeiro, R.M.M.G.P. et al. Oxygen transfer and gas holdup in airlift bioreactors assembled with helical flow promoters. Bioprocess Biosyst Eng 46, 681–692 (2023). https://doi.org/10.1007/s00449-023-02853-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02853-w

Keywords

Navigation