Skip to main content
Log in

A multi-component approach for co-immobilization of lipases on silica-coated magnetic nanoparticles: improving biodiesel production from waste cooking oil

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The capability of multi-component reactions in rapid immobilization of enzymes was considered for co-immobilization of Thermomyces lanuginous lipase (TLL) and Candida antarctica lipase B (CALB) [TLL: CALB]; Rhizomucor miehei lipase (RML) and CALB [RML: CALB] on amine-functionalized silica-coated magnetic nanoparticles (Fe3O4@SiO2-NH2). Immobilization of different ratios of lipases was performed within 3 h under mild conditions; producing specific activity ranging from 29 to 35 U/mg for TLL:CALB and 21–34 U/mg for RML:CALB. The co-immobilized derivatives showed improved co-solvent and thermal stability compared to the corresponding free enzymes. All the derivatives were also used to catalyze the transesterification of waste cooking oil with methanol to produce biodiesel (fatty acid methyl esters). Response surface method (RSM) and a central composite rotatable design (CCRD) were used to study the effects of different factors on the FAME yield. Fe3O4@SiO2-NH2-RML-CALB and Fe3O4@SiO2-NH2-TLL-CALB had maximum FAME yields of 99–80%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Franssen MC, Steunenberg P, Scott EL, ZuilhofSanders H (2013) Immobilised enzymes in biorenewables production. R Soc Chem 42:6491–6533. https://doi.org/10.1039/C3CS00004D

    Article  CAS  Google Scholar 

  2. Babaki M, Yousefi M, Habibi Z, MohammadiBrask M (2015) Effect of water, organic solvent and adsorbent contents on production of biodiesel fuel from canola oil catalyzed by various lipases immobilized on epoxy-functionalized silica as low cost biocatalyst. Mol Catal B: Enzym 120:93–99. https://doi.org/10.1016/j.molcatb.2015.06.014

    Article  CAS  Google Scholar 

  3. Georgogianni K, Kontominas M, Tegou E, Avlonitis D, Gergis V (2007) Biodiesel production: reaction and process parameters of alkali-catalyzed transesterification of waste frying oils. Energy Fuels 21:3023–3027. https://doi.org/10.1021/ef070102b

    Article  CAS  Google Scholar 

  4. Gerpen V (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107. https://doi.org/10.1016/j.fuproc.2004.11.005

    Article  CAS  Google Scholar 

  5. Haas MJ, Michalski PJ, Runyon S, Nunez A, Scott KM (2003) Production of FAME from acid oil, a by-product of vegetable oil refining. J Am Oil Chem Soc 80:97–102. https://doi.org/10.1007/s11746-003-0658-4

    Article  CAS  Google Scholar 

  6. C. Wancura JH, Tres MV, Jahn SL, de Oliveira JV, (2020) Lipases in liquid formulation for biodiesel production: current status and challenges. Biotechnol Appl Biochem 67:648–667. https://doi.org/10.1002/bab.1835

    Article  CAS  PubMed  Google Scholar 

  7. Wancura JH, Fantinel AL, Ugalde GA, Donato FF, de Oliveira JV, Tres MV, Jahn SL (2021) Semi-continuous production of biodiesel on pilot scale via enzymatic hydroesterification of waste material: process and economics considerations. J Cleaner Prod 285:124838. https://doi.org/10.1016/j.jclepro.2020.124838

    Article  CAS  Google Scholar 

  8. Wancura JH, Rosset DV, Ugalde GA, Oliveira JV, Mazutti MA, Tres MV, Jahn SL (2019) Feeding strategies of methanol and lipase on eversa® transform-mediated hydroesterification for FAME production. J Chem Eng 97:1332–1339. https://doi.org/10.1002/cjce.23404

    Article  CAS  Google Scholar 

  9. Zhang B, Weng Y, Xu H, Mao Z (2012) Enzyme immobilization for biodiesel production. Appl Microbiol Biotechnol 93:61–70. https://doi.org/10.1007/s00253-011-3672-x

    Article  CAS  PubMed  Google Scholar 

  10. Weiser D, Nagy F, Bánóczi G, Oláh M, Farkas A, Szilágyi A, László K, Gellért Á, Marosi G, Kemény SJ (2017) Immobilization engineering–How to design advanced sol–gel systems for biocatalysis? Green Chem 19:3927–3937. https://doi.org/10.1039/C7GC00896A

    Article  CAS  Google Scholar 

  11. Alamsyah G, Albels VA, Sahlan M, Hermansyah HJ (2017) Effect of chitosan’s amino group in adsorption-crosslinking immobilization of lipase enzyme on resin to catalyze biodiesel synthesis. Energy Procedia 136:47–52. https://doi.org/10.1016/j.egypro.2017.10.278

    Article  CAS  Google Scholar 

  12. Adlercreutz PJ (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42:6406–6436. https://doi.org/10.1039/C3CS35446F

    Article  CAS  PubMed  Google Scholar 

  13. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511. https://doi.org/10.1016/j.biotechadv.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  14. Barbosa O, Torres R, Ortiz C, Berenguer-Murcia Á, Rodrigues RC, Fernandez-Lafuente R (2013) Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromol 14:2433–2462. https://doi.org/10.1021/bm400762h

    Article  CAS  Google Scholar 

  15. Yildiz H, Ozyilmaz E, Bhatti AA (2017) Enantioselective resolution of racemic flurbiprofen methyl ester by lipase encapsulated mercapto calix[4]arenes capped Fe3O4 nanoparticles. Bioprocess Biosyst Eng 40:1189–1196. https://doi.org/10.1007/s00449-017-1779-x

    Article  CAS  PubMed  Google Scholar 

  16. Ozyilmaz E, Sayin S (2013) A magnetically separable biocatalyst for resolution of racemic naproxen methyl ester. Bioprocess Biosyst Eng 36:1803–1806. https://doi.org/10.1007/s00449-013-0941-3

    Article  CAS  PubMed  Google Scholar 

  17. Liu X (2018) Preparation of porous hollow Fe3O4/P(GMA–DVB–St) microspheres and application for lipase immobilization. Bioprocess Biosyst Eng 41:771–779. https://doi.org/10.1007/s00449-018-1910-7

    Article  CAS  PubMed  Google Scholar 

  18. Mohammadi M, Ashjari M, Dezvarei S, Yousefi M, Babaki M, Mohammadi (2015) Rapid and high-density covalent immobilization of Rhizomucor miehei lipase using a multi component reaction: application in biodiesel production. RSC adv 5:32698–32705. https://doi.org/10.1039/C5RA03299G

    Article  CAS  Google Scholar 

  19. Mohammadi M, Ashjari M, Garmroodi M, Yousefi M, Karkhane AA (2016) The use of isocyanide-based multicomponent reaction for covalent immobilization of Rhizomucor miehei lipase on multiwall carbon nanotubes and graphene nanosheets. RSC adv 6:72275–72285

    Article  CAS  Google Scholar 

  20. Ashjari M, Garmroodi M, Asl FA, Emampour M, Yousefi M, Lish MP, Habibi Z, Mohammadi, (2020) Application of multi-component reaction for covalent immobilization of two lipases on aldehyde-functionalized magnetic nanoparticles; production of biodiesel from waste cooking oil. Process Biochem 90:156–167. https://doi.org/10.1016/j.procbio.2019.11.002

    Article  CAS  Google Scholar 

  21. Shahedi M, Habibi Z, Yousefi M, Brask J, Mohammadi (2021) Improvement of biodiesel production from palm oil by co-immobilization of Thermomyces lanuginosa lipase and Candida antarctica lipase B: optimization using response surface methodology. Int J Biol Macromol 170:490–502. https://doi.org/10.1016/j.ijbiomac.2020.12.181

    Article  CAS  PubMed  Google Scholar 

  22. Sigurdardóttir SB, Lehmann J, Ovtar S, Grivel JC, Negra MD, Kaiser A, Pinelo M (2018) Enzyme immobilization on inorganic surfaces for membrane reactor applications: mass transfer challenges, enzyme leakage and reuse of materials. Adv Synth Catal 360:2578–2607. https://doi.org/10.1002/adsc.201800307

    Article  CAS  Google Scholar 

  23. Vashist SK, Lam E, Hrapovic S, Male KB, Luong JH (2014) Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem Rev 114(21):11083–11130. https://doi.org/10.1021/cr5000943

    Article  CAS  PubMed  Google Scholar 

  24. Cui JD, Jia SR (2015) Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Crit Rev Biotechnol 35:15–28. https://doi.org/10.3109/07388551.2013.795516

    Article  CAS  PubMed  Google Scholar 

  25. Amini Y, Shahedi M, Habibi Z, Yousefi M, Ashjari M, Mohammadi M (2022) A multi-component reaction for covalent immobilization of lipases on amine-functionalized magnetic nanoparticles: production of biodiesel from waste cooking oil. Bioresour Bioprocess online published. https://doi.org/10.1186/s40643-022-00552-0

    Article  Google Scholar 

  26. Alves JS, Vieira NS, Cunha AS, Silva AM, Ayub MAZ, Fernandez-Lafuente R, Rodrigues RC (2014) Combi-lipase for heterogeneous substrates: a new approach for hydrolysis of soybean oil using mixtures of biocatalysts. RSC Adv 4:6863–6868. https://doi.org/10.1039/C3RA45969A

    Article  CAS  Google Scholar 

  27. Poppe JK, Matte CR, Peralba MDCR, Fernandez-Lafuente R, Rodrigues RC, Ayub MAZ (2015) Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases. Appl Catal A: Gen 490:50–56. https://doi.org/10.1016/j.apcata.2014.10.050

    Article  CAS  Google Scholar 

  28. Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S (2020) Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. Materials (Basel) 13:4644. https://doi.org/10.3390/ma13204644

    Article  CAS  PubMed  Google Scholar 

  29. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  31. Ahrari F, Yousefi M, Habibi Z, Mohammadi M (2022) Application of undecanedicarboxylic acid to prepare cross-linked enzymes (CLEs) of Rhizomucor miehei lipase (RML); Selective enrichment of polyunsaturated fatty acids. Mol Catal 520:112172. https://doi.org/10.1016/j.mcat.2022.112172

    Article  CAS  Google Scholar 

  32. Basso A, Banfi L, Riva R (2011) Divergent synthesis of novel five-membered heterocyclic compounds by base-mediated rearrangement of acrylamides derived from a novel isocyanide-based multicomponent reaction. Molecules 16:8775–8787. https://doi.org/10.3390/molecules16108775

    Article  CAS  PubMed Central  Google Scholar 

  33. Mohammadi M, Gandomkar S, Habibi Z, Yousefi M (2016) One pot three-component reaction for covalent immobilization of enzymes: application of immobilized lipases for kinetic resolution of rac-ibuprofen. RSC Adv 6:52838–52849. https://doi.org/10.1039/C6RA11284F

    Article  CAS  Google Scholar 

  34. Ahmadipour M, Hatami M, Rao KV (2012) Preparation and characterization of nano-sized (Mg (x) Fe (1–x) O/SiO2)(x= 0.1) core-shell nanoparticles by chemical precipitation method. Adv Nanoparticles 1:37–43. https://doi.org/10.4236/anp.2012.13006

    Article  CAS  Google Scholar 

  35. Henriques RO, Bork JA, Fernandez-Lorente G, Guisan JM, Furigo A Jr, de Oliveira D, Pessela BC (2018) Co-immobilization of lipases and β-d-galactosidase onto magnetic nanoparticle supports: biochemical characterization. Mol Catal 453:12–21. https://doi.org/10.1016/j.mcat.2018.04.022

    Article  CAS  Google Scholar 

  36. Babaki M, Yousefi M, Habibi Z, Mohammadi M, Yousefi P, Mohammadi J, Brask J (2016) Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents. Renew Energ 91:196–206. https://doi.org/10.1016/j.renene.2016.01.053

    Article  CAS  Google Scholar 

  37. Garmroodi M, Mohammadi M, Ramazani A, Ashjari M, Mohammadi J, Sabour B, Yousefi M (2016) Covalent binding of hyper-activated Rhizomucor miehei lipase (RML) on hetero-functionalized siliceous supports. Int J Biol Macromol 86:208–215. https://doi.org/10.1016/j.ijbiomac.2016.01.076

    Article  CAS  PubMed  Google Scholar 

  38. Noureddini H, Gao X, Philkana RJ (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777. https://doi.org/10.1016/j.biortech.2004.05.029Get

    Article  CAS  PubMed  Google Scholar 

  39. Guldhe A, Singh B, Mutanda T, Permaul K, Bux F (2015) Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renew Sust Energ Rev 41:1447–1464. https://doi.org/10.1016/j.rser.2014.09.035

    Article  CAS  Google Scholar 

  40. Poole P, Finney JJ (1983) Hydration-induced conformational and flexibility changes in lysozyme at low water content. Int J Biol Macromol 5:308–310. https://doi.org/10.1016/0141-8130(83)90047-8

    Article  CAS  Google Scholar 

  41. Jordaan J, Leukes WD (2003) Isolation of a thermostable laccase with DMAB and MBTH oxidative coupling activity from a mesophilic white rot fungus. Enzyme Microb Technol 33:212–219. https://doi.org/10.1016/S0141-0229(03)00116-9

    Article  CAS  Google Scholar 

  42. Toro EC, Rodríguez DF, Morales N, García LM, Godoy CA (2019) Novel combi-lipase systems for fatty acid ethyl esters production. Catalysts 9:546. https://doi.org/10.3390/catal9060546

    Article  CAS  Google Scholar 

  43. Tiosso PC, Carvalho AKF, De Castro HF, de Moraes FD, Zanin GM (2014) Utilization of immobilized lipases as catalysts in the transesterification of non-edible vegetable oils with ethanol. Braz J Chem Eng 31:839–847. https://doi.org/10.1590/0104-6632.20140314s00003006

    Article  Google Scholar 

  44. Peng B, Yang JY, Liu X, Hu JN, Zheng LF, Li J, Deng ZY (2020) Enzymatic synthesis of 1, 3-oleic-2-medium chain triacylglycerols and strategy of controlling acyl migration: insights from experiment and molecular dynamics simulation. Int J Food Prop 23:1082–1096. https://doi.org/10.1080/10942912.2020.1775645

    Article  CAS  Google Scholar 

  45. Peng B, Chen F, Liu X, Hu JN, Zheng LF, Li J, Deng ZY (2020) Trace water activity could improve the formation of 1, 3-oleic-2-medium chain-rich triacylglycerols by promoting acyl migration in the lipase RM IM catalyzed interesterification. Food Chem 313:126130. https://doi.org/10.1016/j.foodchem.2019.126130

    Article  CAS  PubMed  Google Scholar 

  46. Pacheco C, Crapiste GH, Carrín ME (2015) Study of acyl migration during enzymatic interesterification of liquid and fully hydrogenated soybean oil. J Mol Catal B Enzym 122:117–124. https://doi.org/10.1016/j.molcatb.2015.08.023

    Article  CAS  Google Scholar 

  47. Binhayeeding N, Klomklao S, Prasertsan P, Sangkharak K (2020) Improvement of biodiesel production using waste cooking oil and applying single and mixed immobilised lipases on polyhydroxyalkanoate. Renew Energy 162:1819–1827. https://doi.org/10.1016/j.renene.2020.10.009

    Article  CAS  Google Scholar 

  48. Yasvanthrajan N, Sivakumar P, Muthukumar K, Murugesan T, Arunagiri A (2021) Production of biodiesel from waste bio-oil through ultrasound assisted transesterification using immobilized lipase. Environ Technol Innov 21:101199. https://doi.org/10.1016/j.eti.2020.101199

    Article  CAS  Google Scholar 

  49. Wenlei X, Huang M (2020) Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly (glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biodiesel. Renew Energy 158:474–486. https://doi.org/10.1016/j.renene.2020.05.172

    Article  CAS  Google Scholar 

  50. Wenlei X, Huang M (2018) Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: characterization and application for biodiesel production. Energy Convrs Manag 159:42–53. https://doi.org/10.1016/j.enconman.2018.01.021

    Article  CAS  Google Scholar 

  51. Wenlei X, Wang J (2012) Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass Bioenergy 36:373–380. https://doi.org/10.1016/j.biombioe.2011.11.006

    Article  CAS  Google Scholar 

  52. Zhang H, Liu T, Zhu Y, Hong L, Li T, Wang X, Fu Y (2020) Lipases immobilized on the modified polyporous magnetic cellulose support as an efficient and recyclable catalyst for biodiesel production from yellow horn seed oil. Renew Energy 145:1246–1254. https://doi.org/10.1016/j.renene.2019.06.031

    Article  CAS  Google Scholar 

  53. Shomal R, Du W, Al-Zuhair S (2022) Immobilization of lipase on metal-organic frameworks for biodiesel production. J Environ Chem Eng 10:107265. https://doi.org/10.1016/j.jece.2022.107265

    Article  CAS  Google Scholar 

  54. Rafiei S, Tangestaninejad S, Horcajada P, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F (2018) Efficient biodiesel production using a lipase@ ZIF-67 nanobioreactor. Chem Eng J 334:1233–1241. https://doi.org/10.1016/j.cej.2017.10.094

    Article  CAS  Google Scholar 

  55. Kumar R, Pal P (2021) Lipase immobilized graphene oxide biocatalyst assisted enzymatic transesterification of Pongamia pinnata (Karanja) oil and downstream enrichment of biodiesel by solar-driven direct contact membrane distillation followed by ultrafiltration. Fuel Process Technol 211:106577. https://doi.org/10.1016/j.fuproc.2020.106577

    Article  CAS  Google Scholar 

  56. Li Q, Zheng J, Yan YJ (2010) Biodiesel preparation catalyzed by compound-lipase in co-solvent. Fuel Process Technol 91:1229–1234. https://doi.org/10.1016/j.fuproc.2010.04.002

    Article  CAS  Google Scholar 

  57. Klibanov AM (1989) Enzymatic catalysis in anhydrous organic solvents. Trends Biochem Sci 14:141–144. https://doi.org/10.1016/0968-0004(89)90146-1

    Article  CAS  PubMed  Google Scholar 

  58. Du W, Liu D, Li L, Dai L (2007) Mechanism exploration during lipase-mediated methanolysis of renewable oils for biodiesel production in a tert-butanol system. Biotechnol Prog 23:1087–1090. https://doi.org/10.1021/bp070073n

    Article  CAS  PubMed  Google Scholar 

  59. Arana-Peña S, Carballares D, Berenguer-Murcia Á, Alcántara AR, Rodrigues RC, Fernandez-Lafuente R (2020) One pot use of combilipases for full modification of oils and fats: multifunctional and heterogeneous substrates. Catalysts 10:605–662. https://doi.org/10.3390/catal10060605

    Article  CAS  Google Scholar 

  60. Sim JH, Kamaruddin AH, Bhatia S (2010) The feasibility study of crude palm oil transesterification at 30 °C operation. Bioresour Technol 101:8948–8954. https://doi.org/10.1016/j.biortech.2010.07.039

    Article  CAS  PubMed  Google Scholar 

  61. Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298–1315. https://doi.org/10.1039/C3CS00004D

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zohreh Habibi or Maryam Yousefi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alikhani, N., Shahedi, M., Habibi, Z. et al. A multi-component approach for co-immobilization of lipases on silica-coated magnetic nanoparticles: improving biodiesel production from waste cooking oil. Bioprocess Biosyst Eng 45, 2043–2060 (2022). https://doi.org/10.1007/s00449-022-02808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02808-7

Keywords

Navigation