Skip to main content

Advertisement

Log in

Novel chromatographic purification of succinic acid from whey fermentation broth by anionic exchange resins

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Replacement of the petroleum-based refineries with the biorefinery is regarded as an essential step towards a “zero” waste (circular) economy. Biobased succinic acid (SA) is listed by the United States Department of Energy among the top ten chemicals with the potential to replace chemicals from petroleum synthesis with renewable sources. Purification of bio-based succinic acid from fermentation by-products such as alcohols, formic acid, acetic acid and lactic is a major drawback of fermentative SA production. This study addresses this issue through a novel chromatographic separation using three distinct anionic resins: Amberlite IRA958 Cl (strong base anion exchange resin), Amberlite HPR 900 OH (strong base anion exchange resin) and Amberlyst A21 (week base anion exchange resin). The influence of process variables such as flow rate (0.18 BV/h, 0.42 BV/h and 0.84 BV/h), eluent concentration (1%, 5% and 10% HCl) and temperature (20, 30 and 40 °C) were investigated. The results indicated SA separation efficiency of 76.1%, 69.3% and 81.2% for Amberlyst A21, Amberlite HPR 900 OH and Amberlite IRA958 Cl, respectively. As the regenerant HCl concentration increased from 1 to 10%, calculated succinic acid separation efficiencies decreased from 80.3 to 70.7%. Notably, as the regenerant strength increased from 1 to 10%, the total amount of organic acids desorbed from the resin sharply increased. At operation temperatures of 20, 30 and 40 °C, SA separation efficacies were 81.2%, 73.9% and 76.4%, respectively. The insights from this study will be of great value in design of chromatographic separation systems for organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The corresponding authors’ data supporting this study’s findings are available upon reasonable request.

References

  1. Saxena RK, Saran S, Isar J, Kaushik R (2017) Production and applications of succinic acid. In: Pandey A, Negi S, Soccol CR (eds) Current developments in biotechnology and bioengineering. Elsevier, pp 601–630. https://doi.org/10.1016/B978-0-444-63662-1.00027-0

    Chapter  Google Scholar 

  2. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates - The US department of energy’s “top 10” revisited. Green Chem 12:539–554. https://doi.org/10.1039/b922014c

    Article  CAS  Google Scholar 

  3. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108. https://doi.org/10.1016/j.tibtech.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  4. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552. https://doi.org/10.1007/s002530051431

    Article  CAS  Google Scholar 

  5. Pateraki C, Patsalou M, Vlysidis A, Kopsahelis N, Webb C, Koutinas AA, Koutinas M (2016) Actinobacillus succinogenes: advances on succinic acid production and prospects for development of integrated biorefineries. Biochem Eng J 112:285–303. https://doi.org/10.1016/j.bej.2016.04.005

    Article  CAS  Google Scholar 

  6. Zheng P, Dong JJ, Sun ZH, Ni Y, Fang L (2009) Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour Technol 100:2425–2429. https://doi.org/10.1016/j.biortech.2008.11.043

    Article  CAS  PubMed  Google Scholar 

  7. Shen N, Zhang H, Qin Y, Wang Q, Zhu J, Li Y, Jiang MG, Huang R (2018) Efficient production of succinic acid from duckweed (Landoltia punctata) hydrolysate by Actinobacillus succinogenes GXAS137. Bioresour Technol 250:35–42. https://doi.org/10.1016/j.biortech.2017.09.208

    Article  CAS  PubMed  Google Scholar 

  8. Lee SJ, Song H, Lee SY (2006) Genome-based metabolic engineering of Mannheimia succiniproducens for succinic acid production. Appl Environ Microbiol 72:1939–1948. https://doi.org/10.1128/AEM.72.3.1939-1948.2006/SUPPL_FILE/AEM02630_05_SUPPLTABLE1_FIGLEG.DOC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oh I, Lee H, Park C, SL-J of microbiology, undefined 2008, Succinic acid production by continuous fermentation process using Mannheimia succiniciproducens LPK7, Koreascience.or.Kr. (nd). https://www.koreascience.or.kr/article/JAKO200822179194515.page (Accessed Sep 10 2022).

  10. Kumar H, Alén R (2015) Recovery of aliphatic low-molecular-mass carboxylic acids from hardwood kraft black liquor. Sep Purif Technol 142:293–298. https://doi.org/10.1016/j.seppur.2014.12.038

    Article  CAS  Google Scholar 

  11. Cao X, Yun HS, Koo YM (2002) Recovery of L-(+)-lactic acid by anion exchange resin Amberlite IRA-400 in. Biochem Eng J. https://doi.org/10.1016/S1369-703X(02)00024-4

    Article  Google Scholar 

  12. Kang SH, Chang YK (2005) Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration. J Memb Sci 246:49–57. https://doi.org/10.1016/j.memsci.2004.08.014

    Article  CAS  Google Scholar 

  13. Prochaska K, Antczak J, Regel-Rosocka M, Szczygiełda M (2018) Removal of succinic acid from fermentation broth by multistage process (membrane separation and reactive extraction). Sep Purif Technol 192:360–368. https://doi.org/10.1016/j.seppur.2017.10.043

    Article  CAS  Google Scholar 

  14. Djas M, Henczka M (2018) Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: a review. Sep Purif Technol 201:106–119. https://doi.org/10.1016/j.seppur.2018.02.010

    Article  CAS  Google Scholar 

  15. Cheng KK, Zhao XB, Zeng J, Wu RC, Xu YZ, Liu DH, Zhang JA (2012) Downstream processing of biotechnological produced succinic acid. Appl Microbiol Biotechnol 95:841–850. https://doi.org/10.1007/s00253-012-4214-x

    Article  CAS  PubMed  Google Scholar 

  16. Nam HG, Park KM, Lim SS, Mun S (2011) Adsorption equilibria of succinic acid and lactic acid on amberchrom CG300C resin. J Chem Eng Data 56:464–471. https://doi.org/10.1021/je1008729

    Article  CAS  Google Scholar 

  17. Käkölä J, Alén R, Pakkanen H, Matilainen R, Lahti K (2007) Quantitative determination of the main aliphatic carboxylic acids in wood kraft black liquors by high-performance liquid chromatography-mass spectrometry. J Chromatogr A 1139:263–270. https://doi.org/10.1016/j.chroma.2006.11.033

    Article  CAS  PubMed  Google Scholar 

  18. Glód BK (1997) Ion exclusion chromatography: parameters influencing retention. Neurochem Res 22:1237–1248. https://doi.org/10.1023/A:1021933013492

    Article  PubMed  Google Scholar 

  19. Alén R, Sjöström E, Suominen S (2007) Application of ion-exclusion chromatography to alkaline pulping liquors; separation of hydroxy carboxylic acids from inorganic solids. J Chem Technol Biotechnol 51:225–233. https://doi.org/10.1002/jctb.280510208

    Article  Google Scholar 

  20. Hellstén S, Heinonen J, Sainio T (2013) Size-exclusion chromatographic separation of hydroxy acids and sodium hydroxide in spent pulping liquor. Sep Purif Technol 118:234–241. https://doi.org/10.1016/j.seppur.2013.06.027

    Article  CAS  Google Scholar 

  21. Close EJ, Salm JR, Bracewell DG, Sorensen E (2014) Modelling of industrial biopharmaceutical multicomponent chromatography. Chem Eng Res Des 92:1304–1314. https://doi.org/10.1016/j.cherd.2013.10.022

    Article  CAS  Google Scholar 

  22. Blanc C, Theoleyre M, Lutin F, Pareau D, Stambouli M (2015) Purification of organic acids by chromatography : adsorption isotherms and impact of elution flow rate. Sep Purif Technol 141:105–112. https://doi.org/10.1016/j.seppur.2014.11.032

    Article  CAS  Google Scholar 

  23. Zhang Y, Li Q, Zhang Y, Wang D, Xing J (2012) Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology (RSM). J Zhejiang Univ Sci B 13:103–110. https://doi.org/10.1631/jzus.B1100134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Corona-González RI, Miramontes-Murillo R, Arriola-Guevara E, Guatemala-Morales G, Toriz G, Pelayo-Ortiz C (2014) Immobilization of Actinobacillus succinogenes by adhesion or entrapment for the production of succinic acid. Bioresour Technol 164:113–118. https://doi.org/10.1016/j.biortech.2014.04.081

    Article  CAS  PubMed  Google Scholar 

  25. Nobre C, Santos MJ, Dominguez A, Torres D, Rocha O, Peres AM, Rocha I, Ferreira EC, Teixeira JA, Rodrigues LR (2009) Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins. Anal Chim Acta 654:71–76. https://doi.org/10.1016/j.aca.2009.06.043

    Article  CAS  PubMed  Google Scholar 

  26. Stefansson M, Westerlund D (1996) Ligand-exchange chromatography of carbohydrates and glycoconjugates. J Chromatogr A 720:127–136. https://doi.org/10.1016/0021-9673(95)00276-6

    Article  CAS  Google Scholar 

  27. Xiong Z, Zhao D, Harper WF (2007) Sorption and desorption of perchlorate with various classes of ion exchangers a comparative study in. Ind Eng Chem Res. https://doi.org/10.1021/ie0702025

    Article  Google Scholar 

  28. Sharbatmaleki M, Batista JR (2012) Multi-cycle bioregeneration of spent perchlorate-containing macroporous selective anion-exchange resin. Water Res 46:21–32. https://doi.org/10.1016/j.watres.2011.10.012

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Y, Gao N, Wang Q, Wei X (2015) Adsorption of perchlorate from aqueous solutions by anion exchange resins: effects of resin properties and solution chemistry colloids surfaces a. Physicochem Eng Asp 468:114–121. https://doi.org/10.1016/j.colsurfa.2014.11.062

    Article  CAS  Google Scholar 

  30. Li Q, Xing J, Li W, Liu Q, Su Z (2009) separation of succinic acid from fermentation broth using weak alkaline anion exchange adsorbents. Ind Eng Chem Res 48:3595–3599. https://doi.org/10.1021/ie801304k

    Article  CAS  Google Scholar 

  31. Vente JA, Bosch H, de Haan AB, Bussman PJT (2016) Sorption and separation of sugars with adsorbents based on reversible chemical interaction. Adsorpt Sci Technol. https://doi.org/10.1260/026361706781388987

    Article  Google Scholar 

  32. Ghim YS, Chang HN (1982) Adsorption characteristics of glucose and fructose in ion-exchange resin columns. Ind Eng Chem Fundam 21:369–374. https://doi.org/10.1021/i100008a009

    Article  CAS  Google Scholar 

  33. Lin SKC, Du C, Blaga AC, Camarut M, Webb C, Stevens CV, Soetaert W (2010) Novel resin-based vacuum distillation-crystallisation method for recovery of succinic acid crystals from fermentation broths. Green Chem 12:666–671. https://doi.org/10.1039/b913021g

    Article  CAS  Google Scholar 

  34. Omwene PI, Sarihan ZBO, Karagunduz A, Keskinler B (2021) Bio-based succinic acid recovery by ion exchange resins integrated with nanofiltration/reverse osmosis preceded crystallization. Food Bioprod Process 129:1–9. https://doi.org/10.1016/J.FBP.2021.06.006

    Article  CAS  Google Scholar 

  35. Tung LA, King CJ (1994) Sorption and extraction of lactic and succinic acids at pH > pKa1. 2. regeneration and process considerations. Ind Eng Chem Res 33:3224–3229. https://doi.org/10.1021/ie00036a042

    Article  CAS  Google Scholar 

  36. Uemura Y, Moritake I, Kurihara S, Nonaka T (1999) Preparation of resins having various phosphonium groups and their adsorption and elution behavior for anionic surfactants. J Appl Polym Sci 72:371–378. https://doi.org/10.1002/(SICI)1097-4628(19990418)72:3%3c371::AID-APP7%3e3.0.CO;2-1

    Article  CAS  Google Scholar 

  37. Sathishkumar M, Binupriya AR, Kavitha D, Selvakumar R, Jayabalan R, Choi JG, Yun SE (2009) Adsorption potential of maize cob carbon for 2,4-dichlorophenol removal from aqueous solutions: Equilibrium, kinetics and thermodynamics modeling. Chem Eng J 147:265–271. https://doi.org/10.1016/j.cej.2008.07.020

    Article  CAS  Google Scholar 

  38. Alexandri M, Vlysidis A, Papapostolou H, Tverezovskaya O, Tverezovskiy V, Kookos IK, Koutinas A (2019) Downstream separation and purification of succinic acid from fermentation broths using spent sulphite liquor as feedstock. Sep Purif Technol 209:666–675. https://doi.org/10.1016/J.SEPPUR.2018.08.061

    Article  CAS  Google Scholar 

  39. Luque R, Lin C, Du C, Macquarrie D, A.K.-G. chemistry, undefined 2009, Chemical transformations of succinic acid recovered from fermentation broths by a novel direct vacuum distillation-crystallisation method, Pubs.Rsc.Org. (nd). https://pubs.rsc.org/en/content/articlehtml/2009/gc/b813409j?casa_token=Xb-2BUsiwwcAAAAA:LBivLJobF64hA5D93XPoVQRPg4nwqRDCMLJ-HUcH0PVum6NXwA382aMlwOIhWtGInsDho-fgVxtMEg (Accessed Sept 12 2022).

  40. Sosa PA, Roca C, Velizarov S (2016) Membrane assisted recovery and purification of bio-based succinic acid for improved process sustainability. J Memb Sci 501:236–247. https://doi.org/10.1016/J.MEMSCI.2015.12.018

    Article  CAS  Google Scholar 

  41. Glassner D, 143,834 R Datta - US Patent 5, undefined 1992, Process for the production and purification of succinic acid, Google Patents. (nd.). https://patents.google.com/patent/US5143834A/en (accessed Sep 12 2022).

  42. Huh YS, Jun YS, Hong YK, Song H, Lee SY, Hong WH (2006) Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process Biochem 41:1461–1465. https://doi.org/10.1016/J.PROCBIO.2006.01.020

    Article  CAS  Google Scholar 

  43. Sun Y, Yan L, Fu H, Xiu Z (2014) Salting-out extraction and crystallization of succinic acid from fermentation broths. Process Biochem 49:506–511. https://doi.org/10.1016/j.procbio.2013.12.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the Scientific and Technological Research Council of Turkey (TÜBITAK) for providing the financial support under project No. 115Y824

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Karagündüz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omwene, P.I., Öcal, Z.B., Yağcıoğlu, M. et al. Novel chromatographic purification of succinic acid from whey fermentation broth by anionic exchange resins. Bioprocess Biosyst Eng 45, 2007–2017 (2022). https://doi.org/10.1007/s00449-022-02805-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02805-w

Keywords

Navigation