Skip to main content
Log in

Facile green synthesis, analysis, in vitro antidiabetic and antimicrobial activity of ZnO macropores

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Rapid increase in population and development in industry causes many problems such as microbial contaminations and chronic diseases such as diabetes. Materials synthesized at nanoscale are novel antidiabetic and antimicrobial agents. ZnO nanoparticles with macropores characteristics are synthesized by green methods. Turmeric, clove buds and green tea extracts are used as additives. X-ray diffraction results confirmed the hexagonal wurtzite structure of ZnO nanoparticles and crystallinity was quit high in case of green tea extract. Sample synthesized with clove shows relatively higher crystallite size (10.64) which is pertaining to variation in Zn2+ and OH ions. The nanoparticles are more or less spherical in nature, macropores and clustered together revealed by SEM images. Macroporosity of the sample was further confirmed by nitrogen adsorption–desorption isotherm. The deep absorption band at 605 cm−1 in FTIR spectra attributed the wurtzite-type ZnO. The major dominating sharp peak was detected at 437 cm−1 in Raman spectra which is a feature of the wurtzite hexagonal phase ZnO. UV–Vis spectra showed red shift from wavelength 362 to 375 nm with different plant extracts. Impedance analysis showed a high dielectric constant and low tangent loss in case of green tea extract. ZnO synthesized using green tea exhibited ~ 95% α-glucosidase inhibition activity and 91% α-amylase inhibition activity. Antibacterial results revealed that synthesized ZnO nanoparticles showed activity against Bacillus subtilis and E. coli with inhibition zone 35 mm and 29 mm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Guo B-L, Han P, Guo L-C, Cao Y-Q, Li A-D, Kong J-Z, Zhai H-F, Wu D (2015) The antibacterial activity of Ta-doped ZnO nanoparticles. Nanoscale Res Lett 10(1):1–10

    Article  Google Scholar 

  2. Thompson JM, Dodd CER, Waites WM (1993) Spoilage of bread by bacillus. Int Biodeterior Biodegrad 32(1):55–66. https://doi.org/10.1016/0964-8305(93)90039-5

    Article  Google Scholar 

  3. Moschonas G, Lianou A, Nychas GE, Panagou EZ (2021) Spoilage potential of Bacillus subtilis in a neutral-pH dairy dessert. Food Microbiol 95:103715. https://doi.org/10.1016/j.fm.2020.103715

    Article  CAS  PubMed  Google Scholar 

  4. Esmailzadeh H, Sangpour P, Shahraz F, Hejazi J, Khaksar R (2016) Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes. Mater Sci Eng C 58:1058–1063

    Article  CAS  Google Scholar 

  5. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003–6009. https://doi.org/10.2147/IJN.S35347

    Article  CAS  Google Scholar 

  6. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  7. Sharma N, Kumar J, Thakur S, Sharma S, Shrivastava V (2013) Antibacterial study of silver doped zinc oxide nanoparticles against Staphylococcus aureus and Bacillus subtilis. Drug Invention Today 5(1):50–54

    Article  CAS  Google Scholar 

  8. Faye G, Tola Jebessa TW (2022) Biosynthesis, characterisation and antimicrobial activity of zinc oxide and nickel doped zinc oxide nanoparticles using Euphorbia abyssinica bark extract. IET Nanobiotechnol 16(1):25

    Article  PubMed  Google Scholar 

  9. Fakhari S, Jamzad M, Kabiri Fard H (2019) Green synthesis of zinc oxide nanoparticles: a comparison. Green Chem Lett Rev 12(1):19–24. https://doi.org/10.1080/17518253.2018.1547925

    Article  CAS  Google Scholar 

  10. Raveendran P, Fu J, Wallen SL (2003) Completely, “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941

    Article  CAS  PubMed  Google Scholar 

  11. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    Article  CAS  Google Scholar 

  12. Bayrami A, Haghgooie S, Pouran SR, Arvanag FM, Habibi-Yangjeh A (2020) Synergistic antidiabetic activity of ZnO nanoparticles encompassed by Urtica dioica extract. Adv Powder Technol 31(5):2110–2118

    Article  CAS  Google Scholar 

  13. Arvanag FM, Bayrami A, Habibi-Yangjeh A, Pouran SR (2019) A comprehensive study on antidiabetic and antibacterial activities of ZnO nanoparticles biosynthesized using Silybum marianum L seed extract. Mater Sci Eng C 97:397–405

    Article  Google Scholar 

  14. Bayrami A, Parvinroo S, Habibi-Yangjeh A, Rahim Pouran S (2018) Bio-extract-mediated ZnO nanoparticles: microwave-assisted synthesis, characterization and antidiabetic activity evaluation. Artif Cells Nanomed Biotechnol 46(4):730–739

    Article  CAS  PubMed  Google Scholar 

  15. Bhowmik D, Kumar KS, Yadav A, Srivastava S, Paswan S, Dutta AS (2012) Recent trends in Indian traditional herbs Syzygium aromaticum and its health benefits. J Pharmacogn Phytochem 1(1):13–22

    Google Scholar 

  16. Kochman J, Jakubczyk K, Antoniewicz J, Mruk H, Janda K (2021) Health benefits and chemical composition of matcha green tea: a review. Molecules 26(1):85

    Article  CAS  Google Scholar 

  17. Mata IR, Menezes RCR, Faccioli LS, Bandeira KK, Bosco SMD (2021) Benefits of turmeric supplementation for skin health in chronic diseases: a systematic review. Crit Rev Food Sci Nutr 61(20):3421–3435

    Article  PubMed  Google Scholar 

  18. El-Seedi HR, El-Shabasy RM, Khalifa SA, Saeed A, Shah A, Shah R, Iftikhar FJ, Abdel-Daim MM, Omri A, Hajrahand NH, Sabir JS (2019) Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv 9(42):24539–24559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharma A, Gupta S, Sarethy IP, Dang S, Gabrani R (2012) Green tea extract: possible mechanism and antibacterial activity on skin pathogens. Food Chem 135(2):672–675

    Article  CAS  PubMed  Google Scholar 

  20. Jakubczyk K, Kochman J, Kwiatkowska A, Kałduńska J, Dec K, Kawczuga D, Janda K (2020) Antioxidant properties and nutritional composition of matcha green tea. Foods 9(4):483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saeed S, Tariq P (2008) In vitro antibacterial activity of clove against Gram negative bacteria. Pak J Bot 40(5):2157–2160

    Google Scholar 

  22. Obeizi Z, Benbouzid H, Ouchenane S, Yılmaz D, Culha M, Bououdina M (2020) Biosynthesis of Zinc oxide nanoparticles from essential oil of Eucalyptus globulus with antimicrobial and anti-biofilm activities. Materials Today Communications 25:101553

    Article  CAS  Google Scholar 

  23. Anvarinezhad M, Javadi A, Jafarizadeh-Malmiri H (2020) Green approach in fabrication of photocatalytic, antimicrobial, and antioxidant zinc oxide nanoparticles–hydrothermal synthesis using clove hydroalcoholic extract and optimization of the process. Green Process Synth 9(1):375–385

    Article  Google Scholar 

  24. El-Shafey A, El Din RS, Abdelazim SH, Mamdouh N, El-Dek SI, Zaki AH (2021) Innovative biotemplates for the synthesis of ZnO nanoparticles with versatile morphologies. J Sol-Gel Sci Technol 99(2):326–338

    Article  CAS  Google Scholar 

  25. Gharpure S, Yadwade R, Ankamwar B (2022) Non-antimicrobial and non-anticancer properties of ZnO nanoparticles biosynthesized using different plant parts of Bixa orellana. ACS Omega 7(2):1914–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naseer M, Aslam U, Khalid B, Chen B (2020) Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci Rep 10(1):1–10

    Article  Google Scholar 

  27. Sadiq H, Sher F, Sehar S, Lima EC, Zhang S, Iqbal HM, Zafar F, Nuhanović M (2021) Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J Mol Liq 335:116567

    Article  CAS  Google Scholar 

  28. Harborne, J. B.; (1973) Methods of plant analysis. In: Phytochemical methods. Chapman and Hall, London.

  29. Wagner H, Bladt S, Zgainski EM (1984) Plant drug analysis. Springer-Verlag, Berlin

    Book  Google Scholar 

  30. Kokate CK (1994) Practical pharmacognosy, 4th edn. Vallabh Prakashan, New Delhi

    Google Scholar 

  31. Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI (2005) Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 21(6):756–761

    Article  CAS  PubMed  Google Scholar 

  32. Elderfield H, Hem JD (1973) The development of crystalline structure in aluminium hydroxide polymorphs on ageing. Mineral Mag 39(301):89–96

    Article  CAS  Google Scholar 

  33. Bashir M, Majid F, Akram S, Ali A, Abdelmohsen SA (2022) Biodegradation of gelatin stabilized tetragonal zirconia synthesized by microwave assisted sol-gel method. J Mech Behav Biomed Mater 127:105070

    Article  CAS  PubMed  Google Scholar 

  34. Bukhari SB, Imran M, Bashir M, Riaz S, Naseem S (2018) Room temperature stabilized TiO2 doped ZrO2 thin films for teeth coatings–A sol-gel approach. J Alloy Compd 767:1238–1252

    Article  CAS  Google Scholar 

  35. López-López J, Tejeda-Ochoa A, López-Beltrán A, Herrera-Ramírez J, Méndez-Herrera P (2022) Sunlight photocatalytic performance of ZnO nanoparticles synthesized by green chemistry using different botanical extracts and zinc acetate as a precursor. Molecules 27(1):6

    Article  Google Scholar 

  36. Handore K, Bhavsar S, Horne A, Chhattise P, Mohite K, Ambekar J, Pande N, Chabukswar V (2014) Novel green route of synthesis of ZnO nanoparticles by using natural biodegradable polymer and its application as a catalyst for oxidation of aldehydes. J Macromol Sci 51(12):941–947

    Article  CAS  Google Scholar 

  37. McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 35(8):675–683

    Article  CAS  PubMed  Google Scholar 

  38. Karthik K, Raghu A, Reddy KR, Ravishankar R, Sangeeta M, Shetti NP, Reddy CV (2022) Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 287:132081

    Article  CAS  PubMed  Google Scholar 

  39. Daumann S, Andrzejewski D, Di Marcantonio M, Hagemann U, Wepfer S, Vollkommer F, Bacher G, Epple M, Nannen E (2017) Water-free synthesis of ZnO quantum dots for application as an electron injection layer in light-emitting electrochemical cells. J Mater Chem C 5(9):2344–2351

    Article  CAS  Google Scholar 

  40. Gao H, Yang H, Wang C (2017) Controllable preparation and mechanism of nano-silver mediated by the microemulsion system of the clove oil. Results Phys 7:3130–3136

    Article  Google Scholar 

  41. Hamidian K, Sarani M, Barani M, Khakbaz F (2022) Cytotoxic performance of green synthesized Ag and Mg dual doped ZnO NPs using Salvadora persica extract against MDA-MB-231 and MCF-10 cells. Arab J Chem 15(5):103792

    Article  CAS  Google Scholar 

  42. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int Sch Res Notices. https://doi.org/10.5402/2012/372505

    Article  Google Scholar 

  43. Sharma R, Garg R, Kumari A (2020) A review on biogenic synthesis, applications and toxicity aspects of zinc oxide nanoparticles. EXCLI J 19:1325

    PubMed  PubMed Central  Google Scholar 

  44. Singh J, Kaur S, Kaur G, Basu S, Rawat M (2019) Biogenic ZnO nanoparticles: a study of blueshift of optical band gap and photocatalytic degradation of reactive yellow 186 dye under direct sunlight. Green Process Synth 8(1):272–280

    Article  CAS  Google Scholar 

  45. Pethig R (1984) Dielectric properties of biological materials: biophysical and medical applications. IEEE Trans Insul 19:453–474

    Article  Google Scholar 

  46. Nair, K.M.; Bhalla, A.S.; Hirano, S.I.; Suvorov, D.; Schwartz, R.W.; Zhu, W.; Ceramic Materials and Multilayer Electronic Devices, Nashville, Tennessee, 2003.

  47. Riaz, S.; Shah, S.M.H.; Akbar, A.; Atiq, S; Naseem, S.; Effect of Mn doping on structural, dielectric and magnetic properties of BiFeO3 thin films. J. Sol-Gel Sci. Technol, 2015, 74, 329–339.

  48. Bukhari BS, Imran M, Bashir M, Riaz S, Naseem S (2018) Honey mediated microwave assisted sol–gel synthesis of stabilized zirconia nanofibers. J Sol-Gel Sci Technol 87(3):554–567

    Article  CAS  Google Scholar 

  49. Riaz S, Shah SMH, Akbar A, Atiq S, Naseem S (2015) Effect of Mn doping on structural, dielectric and magnetic properties of BiFeO3 thin films. J Sol-Gel Sci Technol 74:329–339

    Article  CAS  Google Scholar 

  50. Daudu OM (2019) Bee pollen extracts as potential antioxidants and inhibitors of α-amylase and α-glucosidase enzymes in vitro assessment. J Apic Sci 63(2):315–325

    CAS  Google Scholar 

  51. Rehana D, Mahendiran D, Kumar RS, Rahiman AK (2017) In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst Eng 40(6):943–957

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Science Research at King Khalid University, Saudi Arabia for funding this work through the General Research Project under Grant Number (RGP.1/245/43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahwish Bashir.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, M., Majid, F., Sabir, R. et al. Facile green synthesis, analysis, in vitro antidiabetic and antimicrobial activity of ZnO macropores. Bioprocess Biosyst Eng 45, 1993–2006 (2022). https://doi.org/10.1007/s00449-022-02803-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02803-y

Keywords

Navigation