Skip to main content
Log in

Performance of Paracoccus pantotrophus MA3 in heterotrophic nitrification–anaerobic denitrification using formic acid as a carbon source

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Excess amount of nitrogen in wastewater has caused serious concerns, such as water eutrophication. Paracoccus pantotrophus MA3, a novel isolated strain of heterotrophic nitrification–anaerobic denitrification bacteria, was evaluated for nitrogen removal using formic acid as the sole carbon source. The results showed that the maximum ammonium removal efficiency was observed under the optimum conditions of 26.25 carbon to nitrogen ratio, 3.39% (v/v) inoculation amount, 34.64 °C temperature, and at 180 rpm shaking speed, respectively. In addition, quantitative real-time PCR technique analysis assured that the gene expression level of formate dehydrogenase, formate tetrahydrofolate ligase, 5,10-methylenetetrahydrofolate dehydrogenase, serine hydroxymethyltransferase, respiratory nitrate reductase beta subunit, L-glutamine synthetase, glutamate dehydrogenase, and glutamate synthase were up-regulated compared to the control group, and combined with nitrogen mass balance analysis to conclude that most of the ammonium was removed by assimilation. A small amount of nitrate and nearly no nitrite were accumulated during heterotrophic nitrification. MA3 exhibited significant denitrification potential under anaerobic conditions with a maximum nitrate removal rate of 4.39 mg/L/h, and the only gas produced was N2. Additionally, 11.50 ± 0.06 mg/L/h of NH4+-N removal rate from biogas slurry was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alengebawy A, Jin K, Ran Y, Peng J, Zhang X, Ai P (2021) Advanced pre-treatment of stripped biogas slurry by polyaluminum chloride coagulation and biochar adsorption coupled with ceramic membrane filtration. Chemosphere 267:129197. https://doi.org/10.1016/j.chemosphere.2020.129197

    Article  CAS  PubMed  Google Scholar 

  2. Ni H, Arslan M, Wei J, Dai J, Luo Z, Cai R, Zhao S, Gamal El-Din M, Wu Z (2021) Treatment of printing and dyeing wastewater in biological contact oxidation reactors comprising basalt fibers and combination fillers as bio-carriers: Elucidation of bacterial communities and underlying mechanisms. Sci Total Environ 785:147272. https://doi.org/10.1016/j.scitotenv.2021.147272

    Article  CAS  Google Scholar 

  3. Qu D, Wang C, Wang Y, Zhou R, Ren H (2015) Heterotrophic nitrification and aerobic denitrification by a novel groundwater origin cold-adapted bacterium at low temperatures. RSC Adv 5(7):5149–5157. https://doi.org/10.1039/C4RA13141J

    Article  CAS  Google Scholar 

  4. Li Y, Chapman SJ, Nicol GW, Yao H (2018) Nitrification and nitrifiers in acidic soils. Soil Biol Biochem 116:290–301. https://doi.org/10.1016/j.soilbio.2017.10.023

    Article  CAS  Google Scholar 

  5. Chen Z, Jiang Y, Chang Z, Wang J, Song X, Huang Z, Chen S, Li J (2020) Denitrification characteristics and pathways of a facultative anaerobic denitrifying strain, Pseudomonas denitrificans G1. J Biosci Bioeng 129(6):715–722. https://doi.org/10.1016/j.jbiosc.2019.12.011

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Shi H, Xia L, Shi H, Shen T, Wang Z, Wang G, Wang Y (2010) Study of operational conditions of simultaneous nitrification and denitrification in a Carrousel oxidation ditch for domestic wastewater treatment. Biores Technol 101(3):901–906. https://doi.org/10.1016/j.biortech.2009.09.015

    Article  CAS  Google Scholar 

  7. Cui Y, Cui YW, Huang JL (2021) A novel halophilic Exiguobacterium mexicanum strain removes nitrogen from saline wastewater via heterotrophic nitrification and aerobic denitrification. Biores Technol 333:125189. https://doi.org/10.1016/j.biortech.2021.125189

    Article  CAS  Google Scholar 

  8. Medhi K, Singhal A, Chauhan DK, Thakur IS (2017) Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by Paracoccus denitrificans ISTOD1. Biores Technol 242:334–343. https://doi.org/10.1016/j.biortech.2017.03.084

    Article  CAS  Google Scholar 

  9. Fang J, Liao S, Zhang S, Li L, Tan S, Li W, Wang A, Ye J (2021) Characteristics of a novel heterotrophic nitrification-aerobic denitrification yeast, Barnettozyma californica K1. Biores Technol 339:125665. https://doi.org/10.1016/j.biortech.2021.125665

    Article  CAS  Google Scholar 

  10. Yang L, Wang XH, Cui S, Ren YX, Yu J, Chen N, Xiao Q, Guo LK, Wang RH (2019) Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5. Biores Technol 285:121360. https://doi.org/10.1016/j.biortech.2019.121360

    Article  CAS  Google Scholar 

  11. Zhang J, Wu P, Hao B, Yu Z (2011) Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Biores Technol 102(21):9866–9869. https://doi.org/10.1016/j.biortech.2011.07.118

    Article  CAS  Google Scholar 

  12. Huang F, Pan L, Lv N, Tang X (2017) Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification–aerobic denitrification. J Biosci Bioeng 124(5):564–571. https://doi.org/10.1016/j.jbiosc.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  13. Rout PR, Bhunia P, Dash RR (2017) Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Biores Technol 244:484–495. https://doi.org/10.1016/j.biortech.2017.07.186

    Article  CAS  Google Scholar 

  14. Chen H, Zhou W, Zhu S, Liu F, Qin L, Xu C, Wang Z (2021) Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification–aerobic denitrification. Bioresour Technol 322:124507. https://doi.org/10.1016/j.biortech.2020.124507

    Article  CAS  PubMed  Google Scholar 

  15. Yang JR, Wang Y, Chen H, Lyu YK (2019) Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification. Bioresour Technol 274:56–64. https://doi.org/10.1016/j.biortech.2018.10.052

    Article  CAS  PubMed  Google Scholar 

  16. Aboobakar A, Cartmell E, Stephenson T, Jones M, Vale P, Dotro G (2013) Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant. Water Res 47(2):524–534. https://doi.org/10.1016/j.watres.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  17. Zhang QL, Liu Y, Ai GM, Miao LL, Zheng HY, Liu ZP (2012) The characteristics of a novel heterotrophic nitrification–aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Biores Technol 108:35–44. https://doi.org/10.1016/j.biortech.2011.12.139

    Article  CAS  Google Scholar 

  18. Kweku DW, Bismark O, Maxwell A, Desmond KA, Danso KB, Oti-Mensah EA, Quachie AT, Adormaa BB (2017) Greenhouse effect: greenhouse gases and their impact on global warming. J Sci Res Rep 17(6):1–9. https://doi.org/10.9734/JSRR/2017/39630

    Article  Google Scholar 

  19. Takaya N, Catalan-Sakairi MAB, Sakaguchi Y, Kato I, Zhou Z, Shoun H (2003) Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl Environ Microbiol 69(6):3152–3157. https://doi.org/10.1128/AEM.69.6.3152-3157.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hong P, Shu Y, Wu X, Wang C, Tian C, Wu H, Donde OO, Xiao B (2019) Efficacy of zero nitrous oxide emitting aerobic denitrifying bacterium, Methylobacterium gregans DC-1 in nitrate removal with strong auto-aggregation property. Biores Technol 293:122083. https://doi.org/10.1016/j.biortech.2019.122083

    Article  CAS  Google Scholar 

  21. Kortlever R, Peters I, Koper S, Koper MTM (2015) Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd–Pt nanoparticles. ACS Catal 5(7):3916–3923. https://doi.org/10.1021/acscatal.5b00602

    Article  CAS  Google Scholar 

  22. Liu Q, Yang X, Li L, Miao S, Li Y, Li Y, Wang X, Huang Y, Zhang T (2017) Direct catalytic hydrogenation of CO2 to formate over a Schiff-base-mediated gold nanocatalyst. Nat Commun 8(1):1407. https://doi.org/10.1038/s41467-017-01673-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liesivuori J (1991) Savolainen, heikki, methanol and formic acid toxicity: biochemical mechanisms. Pharmacol Toxicol 69(3):157–163. https://doi.org/10.1111/j.1600-0773.1991.tb01290.x

    Article  CAS  PubMed  Google Scholar 

  24. Naik RB, Stephens WP, Wilson DJ, Walker A, Lee HA (1980) Ingestion of formic acid-containing agents–report of three fatal cases. Postgrad Med J 56(656):451. https://doi.org/10.1136/pgmj.56.656.451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Villa Rodríguez E, Ibarra Gámez C, de los Santos-Villalobos S (2018) Extraction of high-quality RNA from Bacillus subtilis with a lysozyme pre-treatment followed by the Trizol method. J Microbiol Methods 147:14–16. https://doi.org/10.1016/j.mimet.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  26. Xu N, Liao M, Liang Y, Guo J, Zhang Y, Xie X, Fan Q, Zhu Y (2021) Biological nitrogen removal capability and pathways analysis of a novel low C/N ratio heterotrophic nitrifying and aerobic denitrifying bacterium (Bacillus thuringiensis strain WXN-23). Environ Res 195:110797. https://doi.org/10.1016/j.envres.2021.110797

    Article  CAS  PubMed  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  28. Meng F, Yang A, Zhang G, Li J, Zou Z, Zhang Y (2019) Effects of C/N ratio on pollution removal efficiency and cell proliferation during the bioconversion of wastewater by photosynthetic bacteria. Desalin Water Treat 156:68–77. https://doi.org/10.5004/dwt.2019.24093

    Article  CAS  Google Scholar 

  29. Li C, Yang J, Wang X, Wang E, Li B, He R, Yuan H (2015) Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24. Biores Technol 182:18–25. https://doi.org/10.1016/j.biortech.2015.01.100

    Article  CAS  Google Scholar 

  30. Zhang D, Li W, Huang X, Qin W, Liu M (2013) Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp. strain SFA13. Bioresour Technol 137:147–152. https://doi.org/10.1016/j.biortech.2013.03.094

    Article  CAS  PubMed  Google Scholar 

  31. Xia L, Li X, Fan W, Wang J (2020) Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge. Bioresour Technol 301:122749. https://doi.org/10.1016/j.biortech.2020.122749

    Article  CAS  PubMed  Google Scholar 

  32. Zhang N, Chen H, Lyu Y, Wang Y (2018) Nitrogen removal by a metal-resistant bacterium, Pseudomonas putida ZN1, capable of heterotrophic nitrification–aerobic denitrification. J Chem Technol Biotechnol 94(4):1165–1175. https://doi.org/10.1002/jctb.5863

    Article  CAS  Google Scholar 

  33. Ladd JN, Jackson RB (1982) Biochemistry of ammonification. Nitrogen Agric Soils. https://doi.org/10.2134/agronmonogr22.c5

    Article  Google Scholar 

  34. Yang Q, Yang T, Shi Y, Xin Y, Zhang L, Gu Z, Li Y, Ding Z, Shi G (2021) The nitrogen removal characterization of a cold-adapted bacterium: Bacillus simplex H-b. Biores Technol 323:124554. https://doi.org/10.1016/j.biortech.2020.124554

    Article  CAS  Google Scholar 

  35. Zhao B, He YL, Zhang XF (2010) Nitrogen removal capability through simultaneous heterotrophic nitrification and aerobic denitrification by Bacillus sp. LY, Environ Technol 31(4):409–416. https://doi.org/10.1080/09593330903508922

    Article  CAS  PubMed  Google Scholar 

  36. Huang X, Li W, Zhang D, Qin W (2013) Ammonium removal by a novel oligotrophic Acinetobacter sp. Y16 capable of heterotrophic nitrification–aerobic denitrification at low temperature. Bioresour Technol 146:44–50. https://doi.org/10.1016/j.biortech.2013.07.046

    Article  CAS  PubMed  Google Scholar 

  37. Jin P, Chen Y, Yao R, Zheng Z, Du Q (2019) New insight into the nitrogen metabolism of simultaneous heterotrophic nitrification-aerobic denitrification bacterium in mRNA expression. J Hazard Mater 371:295–303. https://doi.org/10.1016/j.jhazmat.2019.03.023

    Article  CAS  PubMed  Google Scholar 

  38. Baumann B, Snozzi M, Zehnder AJ, Van Der Meer JR (1996) Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. J Bacteriol 178(15):4367–4374. https://doi.org/10.1128/jb.178.15.4367-4374.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Van Spanning RJM, de Boer APN, Reijnders WNM, De Gier JWL, Delorme CO, Stouthamer AH, Westerhoff HV, Harms N, van der Oost J (1995) Regulation of oxidative phosphorylation: the flexible respiratory network of Paracoccus denitrificans. J Bioenerg Biomembr 27(5):499–512. https://doi.org/10.1007/BF02110190

    Article  PubMed  Google Scholar 

  40. Wimpenny JWT, Cole JA (1967) The regulation of metabolism in facultative bacteria III. The effect of nitrate, Biochimica et Biophysica Acta (BBA) - General Subjects 148(1):233–242. https://doi.org/10.1016/0304-4165(67)90298-X

    Article  CAS  Google Scholar 

  41. Li B, Jing F, Wu D, Xiao B, Hu Z (2021) Simultaneous removal of nitrogen and phosphorus by a novel aerobic denitrifying phosphorus-accumulating bacterium, Pseudomonas stutzeri ADP-19. Biores Technol 321:124445. https://doi.org/10.1016/j.biortech.2020.124445

    Article  CAS  Google Scholar 

  42. Su JF, Cheng C, Ma F (2017) Comparison of the NH4+-N removal ability by Klebsiella sp. FC61 in a bacterial suspension system and a bacterial immobilization system. Sep Purif Technol 172:463–472. https://doi.org/10.1016/j.seppur.2016.09.002

    Article  CAS  Google Scholar 

  43. Bar Even A, Noor E, Flamholz A, Milo R (2013) Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1827(8):1039–1047. https://doi.org/10.1016/j.bbabio.2012.10.013

    Article  CAS  Google Scholar 

  44. Cáceres R, Malińska K, Marfà O (2018) Nitrification within composting: a review. Waste Manage 72:119–137. https://doi.org/10.1016/j.wasman.2017.10.049

    Article  CAS  Google Scholar 

  45. Nagatani H, Shimizu M, Valentine RC (1971) The mechanism of ammonia assimilation in nitrogen fixing bacteria. Arch Mikrobiol 79(2):164–175. https://doi.org/10.1007/BF00424923

    Article  CAS  PubMed  Google Scholar 

  46. Jiang HW, Chen Q, Pan J, Zheng GW, Xu JH (2020) Rational engineering of formate dehydrogenase substrate/cofactor affinity for better performance in NADPH regeneration. Appl Biochem Biotechnol 192(2):530–543. https://doi.org/10.1007/s12010-020-03317-7

    Article  CAS  PubMed  Google Scholar 

  47. Qing H, Donde OO, Tian C, Wang C, Wu X, Feng S, Liu Y, Xiao B (2018) Novel heterotrophic nitrogen removal and assimilation characteristic of the newly isolated bacterium Pseudomonas stutzeri AD-1. J Biosci Bioeng 126(3):339–345. https://doi.org/10.1016/j.jbiosc.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  48. He X, Sun Q, Xu T, Dai M, Wei D (2019) Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a novel halotolerant bacterium Pseudomonas mendocina TJPU04. Bioprocess Biosyst Eng 42(5):853–866. https://doi.org/10.1007/s00449-019-02088-8

    Article  CAS  PubMed  Google Scholar 

  49. Yang A, Zhang G, Yang G, Wang H, Meng F, Wang H, Peng M (2017) Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria. Biores Technol 232:408–411. https://doi.org/10.1016/j.biortech.2017.01.073

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Programs of China (2018YFA090048), the National Natural Science Foundation Program of China (No. 31972611), and the Central Universities Fundamental Research Funds (No. 2662020GXPY006). The authors would like to thank Dr. Nirmal Ghimire for his help in the revision process.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Ai or Demao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1628 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Alengebawy, A., Zhu, X. et al. Performance of Paracoccus pantotrophus MA3 in heterotrophic nitrification–anaerobic denitrification using formic acid as a carbon source. Bioprocess Biosyst Eng 45, 1661–1672 (2022). https://doi.org/10.1007/s00449-022-02771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02771-3

Keywords

Navigation