Skip to main content
Log in

Enhanced aerobic granular sludge formation by applying Phanerochaete chrysosporium pellets as induced nucleus

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The long start-up period is a major challenging issue for the widespread application of aerobic granular sludge (AGS). In this study, a novel rapid start-up strategy was developed by inoculating Phanerochaete chrysosporium (P. chrysosporium) pellets as the induced nucleus in a sequencing batch airlift reactor (SBAR) to enhance activated sludge granulation. The results demonstrated that P. chrysosporium pellets could effectively shorten the aerobic granulation time from 32 to 20 days. The AGS promoted by P. chrysosporium pellets had a larger average diameter (2.60–2.74 mm) than that without P. chrysosporium pellets (1.78–1.88 mm) and had better biomass retention capacity and sedimentation properties; its mixed liquor suspended solids (MLSS) and sludge volume index (SVI30) reached approximately 5.2 g/L and 45 mL/g, respectively. The addition of P. chrysosporium pellets promoted the secretion of extracellular polymeric substances (EPS), especially protein (PN). The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) in P. chrysosporium pellets reactor were 98.91%, 89.17%, 64.73%, and 94.42%, respectively, which were higher than those in the reactor without P. chrysosporium pellets (88.73%, 82.09%, 55.75%, and 88.92%). High throughput sequencing analysis indicated that several functional genera that were responsible for the formation of aerobic granules and the removal of pollutants, such as Acinetobacter, Pseudomonas, Janthinobacterium, and Enterobacter, were found to be predominant in the mature sludge granules promoted by P. chrysosporium pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Barrios-Hernández ML, Pronk M, Garcia H, Boersma A, Brdjanovic D, van Loosdrecht MCM, Hooijmans CM (2020) Removal of bacterial and viral indicator organisms in full-scale aerobic granular sludge and conventional activated sludge systems. Water Res X 6:100040. https://doi.org/10.1016/j.wroa.2019.100040

    Article  CAS  PubMed  Google Scholar 

  2. He QL, Xie ZY, Fu ZD, Wang M, Xu P, Yu J, Ma JW, Gao SX, Chen L, Zhang W, Song JY, Wang HY (2021) Interaction and removal of oxytetracycline with aerobic granular sludge. Bioresour Technol 320:124358. https://doi.org/10.1016/j.biortech.2020.124358

    Article  CAS  PubMed  Google Scholar 

  3. Oliveira AS, Amorim CL, Ramos MA, Mesquita DP, Inocêncio P, Ferreira EC, van Loosdrecht M, Castro PML (2020) Variability in the composition of extracellular polymeric substances from a full-scale aerobic granular sludge reactor treating urban wastewater. J Environ Chem Eng 8:104156. https://doi.org/10.1016/j.jece.2020.104156

    Article  CAS  Google Scholar 

  4. Franca RDG, Vieira A, Mata AMT, Carvalho GS, Pinheiro HM, Lourenço ND (2015) Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. Water Res 85:327–336. https://doi.org/10.1016/j.watres.2015.08.043

    Article  CAS  PubMed  Google Scholar 

  5. Liu XD, Wu SJ, Zhang DJ, Shen JY, Han WQ, Sun XY, Li JS, Wang LJ (2018) Simultaneous pyridine biodegradation and nitrogen removal in an aerobic granular system. J Environ Sci 67:318–329. https://doi.org/10.1016/j.jes.2017.09.016

    Article  CAS  Google Scholar 

  6. Tian XP, Zhao JT, Huang J, Chen GK, Zhao YG (2021) The metabolic process of aerobic granular sludge treating piggery wastewater: microbial community, denitrification genes and mathematical model calculation. J Environ Chem Eng 9:105392. https://doi.org/10.1016/j.jece.2021.105392

    Article  CAS  Google Scholar 

  7. He JG, Xu J, Yu HR (2021) Performance and bacterial community dynamics of aerobic granular sludge working at low temperature enhanced by melamine framework embedding. J Environ Chem Eng 9:105156. https://doi.org/10.1016/j.jece.2021.105156

    Article  CAS  Google Scholar 

  8. Zhang YH, Dong XC, Nuramkhaan M, Lei ZF, Shimizu K, Zhang ZY, Adachi Y, Lee D-J, Tay JH (2019) Rapid granulation of aerobic granular sludge: a mini review on operation strategies and comparative analysis. Bioresour Technol Rep 7:100206. https://doi.org/10.1016/j.biteb.2019.100206

    Article  Google Scholar 

  9. Cai W, Jin MS, Zhao ZW, Lei ZF, Zhang ZY, Adachi Y, Lee D-J (2018) Influence of ferrous iron dosing strategy on aerobic granulation of activated sludge and bioavailability of phosphorus accumulated in granules. Bioresour Technol Rep 2:7–14. https://doi.org/10.1016/j.biteb.2018.03.004

    Article  Google Scholar 

  10. Zhang DJ, Li W, Hou C, Shen JY, Jiang XB, Sun XY, Li JS, Han WQ, Wang LJ, Liu XD (2017) Aerobic granulation accelerated by biochar for the treatment of refractory wastewater. Chem Eng J 314:88–97. https://doi.org/10.1016/j.cej.2016.12.128

    Article  CAS  Google Scholar 

  11. Liang ZX, Tu QQ, Su XX, Yang XY, Chen JY, Chen Y, Li H, Liu CH, He Q (2019) Formation, extracellular polymeric substances, and structural stability of aerobic granules enhanced by granular activated carbon. Environ Sci Pollut Res 26:6123–6132. https://doi.org/10.1007/s11356-018-04101-1

    Article  CAS  Google Scholar 

  12. Li AJ, Li XY, Yu HQ (2013) Aerobic sludge granulation facilitated by activated carbon for partial nitrification treatment of ammonia-rich wastewater. Chem Eng J 218:253–259. https://doi.org/10.1016/j.cej.2012.12.044

    Article  CAS  Google Scholar 

  13. Wang L, Yu TM, Ma F, Vitus T, Bai SS, Yang JX (2019) Novel self-immobilized biomass mixture based on mycelium pellets for wastewater treatment: a review. Water Environ Res 91:93–100. https://doi.org/10.1002/wer.1026

    Article  CAS  PubMed  Google Scholar 

  14. Verawaty M, Pijuan M, Yuan Z, Bond PL (2012) Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment. Water Res 46:761–771. https://doi.org/10.1016/j.watres.2011.11.054

    Article  CAS  PubMed  Google Scholar 

  15. Wang XC, Chen ZL, Kang J, Zhao X, Shen JM, Yang L (2019) The key role of inoculated sludge in fast start-up of sequencing batch reactor for the domestication of aerobic granular sludge. J Environ Sci 78:127–136. https://doi.org/10.1016/j.jes.2018.08.008

    Article  Google Scholar 

  16. Long B, Yang CZ, Pu WH, Yang JK, Liu FB, Zhang L, Cheng K (2015) Rapid cultivation of aerobic granular sludge in a continuous flow reactor. J Environ Chem Eng 3:2966–2973. https://doi.org/10.1016/j.jece.2015.10.001

    Article  CAS  Google Scholar 

  17. Pijuan M, Werner U, Yuan ZG (2011) Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules. Water Res 45:5075–5083. https://doi.org/10.1016/j.watres.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  18. Sun HH, Yu P, Li QL, Ren HQ, Liu B, Ye L, Zhang XX (2017) Transformation of anaerobic granules into aerobic granules and the succession of bacterial community. Appl Microbiol Biotechnol 101:7703–7713. https://doi.org/10.1007/s00253-017-8491-2

    Article  CAS  PubMed  Google Scholar 

  19. Veiter L, Rajamanickam V, Herwig C (2018) The filamentous fungal pellet-relationship between morphology and productivity. Appl Microbiol Biot 102:2997–3006. https://doi.org/10.1007/s00253-018-8818-7

    Article  CAS  Google Scholar 

  20. Espinosa-Ortiz EJ, Rene ER, PakshirajanHullebusch EDv, Lens PNL, K (2016) Fungal pelleted reactors in wastewater treatment: applications and perspectives. Chem Eng J 283:553–571. https://doi.org/10.1016/j.cej.2015.07.068

    Article  CAS  Google Scholar 

  21. Wang JN, Li A, Yang JX, Wang JH, Guo JB, Ma F, Shi SN, Zhang S, Ren NQ (2013) Mycelial pellet as the biomass carrier for semi-continuous production of bioflocculant. RSC Adv 3:18414–18423. https://doi.org/10.1039/c3ra41725e

    Article  CAS  Google Scholar 

  22. Zheng ZJ, Ali A, Su JF, Huang TL, Wang Y, Zhang S (2021) Fungal pellets immobilized bacterial bioreactor for efficient nitrate removal at low C/N wastewater. Bioresour Technol 332:125113. https://doi.org/10.1016/j.biortech.2021.125113

    Article  CAS  PubMed  Google Scholar 

  23. Yu TM, Wang L, Ma F, Wang YJ, Bai SS (2020) A bio-functions integration microcosm: self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms. J Hazard Mater 384:121326. https://doi.org/10.1016/j.jhazmat.2019.121326

    Article  CAS  PubMed  Google Scholar 

  24. Osadolor OA, Nair RB, Lennartsson PR, Taherzadeh MJ (2017) Empirical and experimental determination of the kinetics of pellet growth in filamentous fungi: a case study using Neurospora intermedia. Biochem Eng J 124:115–121. https://doi.org/10.1016/j.bej.2017.05.012

    Article  CAS  Google Scholar 

  25. Dong YH, Li L, Hu XM, Wu CH (2017) Optimization of o-chlorophenol biodegradation by combined mycelial pellets using response surface methodology. Water Air Soil Pollut 228:431–444. https://doi.org/10.1007/s11270-017-3606-z

    Article  CAS  Google Scholar 

  26. Cao YJ, Yin H, Peng H, Tang SY, Lu GN, Dang Z (2017) Biodegradation of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) by Phanerochaete chrysosporium in the presence of Cd2+. Environ Sci Pollut Res 24:11415–11424. https://doi.org/10.1007/s11356-017-8763-5

    Article  CAS  Google Scholar 

  27. Ansari Z, Karimi A, Ebrahimi S, Emami E (2016) Improvement in ligninolytic activity of Phanerochaete chrysosporium cultures by glucose oxidase. Biochem Eng J 105:332–338. https://doi.org/10.1016/j.bej.2015.10.007

    Article  CAS  Google Scholar 

  28. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association(APHA), Washington, DC, USA

  29. Domingos DG, Libardi N, Henriques RO, Xavier JA, da Costa RHR (2021) The effect of Np-magnetite on the granulation process of an SBR reactor used for domestic wastewater treatment. Bioproc Biosyst Eng 44:161–171. https://doi.org/10.1007/s00449-020-02432-3

    Article  CAS  Google Scholar 

  30. Long B, Yang CZ, Pu WH, Yang JK, Jiang GS, Dan JF, Li CY, Liu FB (2014) Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor. Bioresour Technol 166:57–63. https://doi.org/10.1016/j.biortech.2014.05.039

    Article  CAS  PubMed  Google Scholar 

  31. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Bio Chem 193:265–275

    Article  CAS  Google Scholar 

  33. Zhou JH, Zhao H, Hu M, Yu HT, Xu XY, Vidonish J, Alvarez PJ, Zhu L (2015) Granular activated carbon as nucleating agent for aerobic sludge granulation: effect of GAC size on velocity field differences (GAC versus flocs) and aggregation behavior. Bioresour Technol 198:358–363. https://doi.org/10.1016/j.biortech.2015.08.155

    Article  CAS  PubMed  Google Scholar 

  34. Li L, Dong YH, Qian GS, Hu XM, Ye LL (2018) Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen. Bioresour Technol 258:168–176

    Article  CAS  Google Scholar 

  35. Tao J, Qin L, Liu XY, Li BL, Chen JN, You J, Shen YT, Chen XG (2017) Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism. Bioresour Technol 236:60–67. https://doi.org/10.1016/j.biortech.2017.03.106

    Article  CAS  PubMed  Google Scholar 

  36. Liu YQ, Tay JH (2015) Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate. Water Res 80:256–266. https://doi.org/10.1016/j.watres.2015.05.015

    Article  CAS  PubMed  Google Scholar 

  37. Ogawa M, García-Martínez T, Bisson L, Mauricio JC, Moreno J, Moreno-García J (2020) Mapping the intracellular metabolome of yeast biocapsules - Spherical structures of yeast attached to fungal pellets. N Biotechnol 58:55–60. https://doi.org/10.1016/j.nbt.2020.05.003

    Article  CAS  PubMed  Google Scholar 

  38. Liu XY, Li RJ, Chen R, Chen Y, Zeng A, Deng YB, Ma JX, Chen M (2021) Formation of filamentous fungal pellets in aerobic granular sludge via reducing temperature and dissolved oxygen: characteristics of filamentous fungi and denitrification performance. Bioresour Technol 332:125056. https://doi.org/10.1016/j.biortech.2021.125056

    Article  CAS  PubMed  Google Scholar 

  39. Ren TT, Liu L, Sheng GP, Liu XW, Yu HQ, Zhang MC, Zhu JR (2008) Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity. Water Res 42:3343–3352. https://doi.org/10.1016/j.watres.2008.04.015

    Article  CAS  PubMed  Google Scholar 

  40. Long B, Yang CZ, Pu WH, Yang JK, Liu FB, Zhang L, Zhang J, Cheng K (2015) Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor. Bioresour Technol 182:314–322. https://doi.org/10.1016/j.biortech.2015.02.029

    Article  CAS  PubMed  Google Scholar 

  41. da Costa NPAV, Libardi N, Schambeck CM, Filho PB, da Costa RHR (2020) Impact of additive application on the establishment of fast and stable aerobic granulation. Appl Microbiol Biot 104:5697–5709. https://doi.org/10.1007/s00253-020-10657-1

    Article  CAS  Google Scholar 

  42. Iorhemen OT, Zaghloul MS, Hamza RA, Tay JH (2020) Long-term aerobic granular sludge stability through anaerobic slow feeding, fixed feast-famine period ratio, and fixed SRT. J Environ Chem Eng 8:103681. https://doi.org/10.1016/j.jece.2020.103681

    Article  CAS  Google Scholar 

  43. Zhao X, Chen ZL, Wang XC, Li JCZ, Shen JM, Xu H (2015) Remediation of pharmaceuticals and personal care products using an aerobic granular sludge sequencing bioreactor and microbial community profiling using Solexa sequencing technology analysis. Bioresour Technol 179:104–112. https://doi.org/10.1016/j.biortech.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  44. Li NJ, Zhang XH, Wang DQ, Cheng Y, Wu L, Fu LB (2017) Contribution characteristics of the in situ extracellular polymeric substances (EPS) in Phanerochaete chrysosporium to Pb immobilization. Bioproc Biosyst Eng 40:1447–1452. https://doi.org/10.1007/s00449-017-1802-2

    Article  CAS  Google Scholar 

  45. Zhu L, Xu XY, Luo WG, Tian ZJ, Lin HZ, Zhang NN (2008) A comparative study on the formation and characterization of aerobic 4-chloroaniline-degrading granules in SBR and SABR. Appl Microbiol Biot 79:867–874. https://doi.org/10.1007/s00253-008-1476-4

    Article  CAS  Google Scholar 

  46. Wu L, Peng CY, Peng YZ, Li LY, Wang SY, Ma Y (2012) Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift. J Environ Sci 24:234–241. https://doi.org/10.1016/s1001-0742(11)60719-5

    Article  CAS  Google Scholar 

  47. Zhang T, Cai L, Xu BT, Li XC, Qiu WH, Fu CX, Zheng CM (2019) Sulfadiazine biodegradation by Phanerochaete chrysosporium: mechanism and degradation product identification. Chemosphere 237:124418. https://doi.org/10.1016/j.chemosphere.2019.124418

    Article  CAS  PubMed  Google Scholar 

  48. Campo R, Corsino SF, Torregrossa M, Di Bella G (2018) The role of extracellular polymeric substances on aerobic granulation with stepwise increase of salinity. Sep Purif Technol 195:12–20. https://doi.org/10.1016/j.seppur.2017.11.074

    Article  CAS  Google Scholar 

  49. Bassin JP, Tavares DC, Borges RC, Dezotti M (2019) Development of aerobic granular sludge under tropical climate conditions: the key role of inoculum adaptation under reduced sludge washout for stable granulation. J Environ Manage 230:168–182. https://doi.org/10.1016/j.jenvman.2018.09.072

    Article  CAS  PubMed  Google Scholar 

  50. Świątczak P, Cydzik-Kwiatkowska A (2018) Performance and microbial characteristics of biomass in a full-scale aerobic granular sludge wastewater treatment plant. Environ Sci Pollut Res 25:1655–1669. https://doi.org/10.1007/s11356-017-0615-9

    Article  CAS  Google Scholar 

  51. Jiang Y, Wei L, Yang K, Shi XQ, Wang HY (2017) Rapid formation of aniline-degrading aerobic granular sludge and investigation of its microbial community succession. J Clean Prod 166:1235–1243. https://doi.org/10.1016/j.jclepro.2017.08.134

    Article  CAS  Google Scholar 

  52. Winkler MKH, Kleerebezem R, de Bruin LMM, Verheijen PJT, Abbas B, Habermacher J, van Loosdrecht MCM (2013) Microbial diversity differences within aerobic granular sludge and activated sludge flocs. Appl Microbiol Biot 97:7447–7458. https://doi.org/10.1007/s00253-012-4472-7

    Article  CAS  Google Scholar 

  53. Xin X, Qin J (2019) Rapid start-up of partial nitritation in aerobic granular sludge bioreactor and the analysis of bacterial community dynamics. Bioproc Biosyst Eng 42:1973–1981. https://doi.org/10.1007/s00449-019-02190-x

    Article  CAS  Google Scholar 

  54. Thwaites BJ, Reeve P, Dinesh N, Short MD, van den Akker B (2017) Comparison of an anaerobic feed and split anaerobic-aerobic feed on granular sludge development, performance and ecology. Chemosphere 172:408–417. https://doi.org/10.1016/j.chemosphere.2016.12.133

    Article  CAS  PubMed  Google Scholar 

  55. Xia JT, Ye L, Ren HQ, Zhang XX (2018) Microbial community structure and function in aerobic granular sludge. Appl Microbiol Biot 102:3967–3979. https://doi.org/10.1007/s00253-018-8905-9

    Article  CAS  Google Scholar 

  56. Espinosa-Ortiz EJ, Shakya M, Jain R, Rene ER, van Hullebusch ED, Lens PN (2016) Sorption of zinc onto elemental selenium nanoparticles immobilized in Phanerochaete chrysosporium pellets. Environ Sci Pollut Res 23:21619–21630. https://doi.org/10.1007/s11356-016-7333-6

    Article  CAS  Google Scholar 

  57. Innemanová P, Filipová A, Michalíková K, Wimmerová L, Cajthaml T (2018) Bioaugmentation of PAH-contaminated soils: a novel procedure for introduction of bacterial degraders into contaminated soil. Ecol Eng 118:93–96. https://doi.org/10.1016/j.ecoleng.2018.04.014

    Article  Google Scholar 

  58. Zheng ZJ, Zhang DY, Li WG, Qin W, Huang XF, Lv LY (2018) Substrates removal and growth kinetic characteristics of a heterotrophic nitrifying-aerobic denitrifying bacterium, Acinetobacter harbinensis HITLi7T at 2 ℃. Bioresour Technol 259:286–293. https://doi.org/10.1016/j.biortech.2018.03.065

    Article  CAS  PubMed  Google Scholar 

  59. Chen HJ, Zhou WZ, Zhu SN, Liu F, Qin L, Xu C, Wang ZM (2021) Biological nitrogen and phosphorus removal by a phosphorus-accumulating bacteria Acinetobacter sp. strain C-13 with the ability of heterotrophic nitrification-aerobic denitrification. Bioresour Technol 322:124507. https://doi.org/10.1016/j.biortech.2020.124507

    Article  CAS  PubMed  Google Scholar 

  60. Cydzik-Kwiatkowska A, Rusanowska P, Zielinska M, Bernat K, Wojnowska-Baryla I (2016) Microbial structure and nitrogen compound conversions in aerobic granular sludge reactors with non-aeration phases and acetate pulse feeding. Environ Sci Pollut R 23:24857–24870. https://doi.org/10.1007/s11356-016-7709-7

    Article  CAS  Google Scholar 

  61. Chen GK, Huang J, Tian XP, Chu Q, Zhao YG, Zhao H (2018) Effects of influent loads on performance and microbial community dynamics of aerobic granular sludge treating piggery wastewater. J Chem Technol Biotechnol 93:1443–1452. https://doi.org/10.1002/jctb.5512

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the China Major Science and Technology Program for Water Pollution Control and Treatment (No. 2018ZX07601-002), the Liaoning Doctoral Research Start-up Fund (No.2019-BS-087) and Shenyang Science and Technology Plan Fund Project (No. 21-108-9-25).

Author information

Authors and Affiliations

Authors

Contributions

D Y-H: conceptualization, funding acquisition, investigation, visualization, methodology, writing-review & editing. C F: investigation, writing-original draft. L L: conceptualization, supervision, review & editing, funding acquisition. Y Z-W: investigation, writing-original draft. Z X–Y: investigation, writing-review & editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liang Li.

Ethics declarations

Conflict of interest

All the authors declare that there are no financial or personal conflicts of interest in publishing this article.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the authors consent to publish this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Chen, F., Li, L. et al. Enhanced aerobic granular sludge formation by applying Phanerochaete chrysosporium pellets as induced nucleus. Bioprocess Biosyst Eng 45, 815–828 (2022). https://doi.org/10.1007/s00449-022-02698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02698-9

Keywords

Navigation