Skip to main content
Log in

Improved catalytic performance of carrier-free immobilized lipase by advanced cross-linked enzyme aggregates technology

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The cross-linked enzyme aggregates (CLEAs) are one of the technologies that quickly immobilize the enzyme without a carrier. In this study, ionic liquid with amino group (1-aminopropyl-3-methylimidazole bromide, FIL) was used as the novel functional surface molecule to modify CRL (Candida rugosa lipase, CRL). The enzymatic properties of CRL-FIL-CLEAs were investigated. The activity of CRL-FIL-CLEAs (5.51 U/mg protein) was 1.9 times higher than that of CRL-CLEAs (2.86 U/mg protein) without surface modification. After incubating in a centrifuge tube for 50 min at 60 °C, CRL-FIL-CLEAs still maintained 61% of its initial activity, while the value for CRL-CLEAs was only 22%. After repeated use for five times, compared with the 22% residual activity of CRL-CLEAs, the value of CRL-FIL-CLEAs was 51%. Based on the above results, it was indicated that this method provided a new idea for the effective synthesis of immobilized enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Derewenda ZS (1994) Structure and function of lipases. Adv Protein Chem 45:1–52

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, Ma RT, Shi YP (2020) “Recent advances on support materials for lipase immobilization and applicability as biocatalysts in inhibitors screening methods”-A review. Anal Chim Acta 1101:9–22

    Article  CAS  PubMed  Google Scholar 

  3. Wang XP, Xiao B, Yang GL, Chen JN, Liu W (2021) Enzymatic preparation of phytosterol esters with fatty acids from high-oleic sunflower seed oil using response surface methodology. Rsc Adv 11:15204–15212

    Article  CAS  Google Scholar 

  4. Fernandes KV, Cavalcanti EDC, Cipolatti EP, Aguieiras ECG, Pinto MCC, Tavares FA, da Silva PR, Fernandez-Lafuente R, Arana-Pena S, Pinto JC, Assuncao CLB, da Silva JAC, Freire DMG (2021) Enzymatic synthesis of biolubricants from by-product of soybean oil processing catalyzed by different biocatalysts of Candida rugosa lipase. Catal Today 362:122–129

    Article  CAS  Google Scholar 

  5. Elias N, Wahab RA, Jye LW, Mahat NA, Chandren S, Jamalis J (2021) Taguchi orthogonal design assisted immobilization of Candida rugosa lipase onto nanocellulose-silica reinforced polyethersulfone membrane: physicochemical characterization and operational stability. Cellulose 28:5669–5691

    Article  CAS  Google Scholar 

  6. Mohammadi-Mahani H, Badoei-dalfard A, Karami Z (2021) Synthesis and characterization of cross-linked lipase-metal hybrid nanoflowers on graphene oxide with increasing the enzymatic stability and reusability. Biochem Eng J 172:108038–108054

    Article  CAS  Google Scholar 

  7. Weltz JS, Kienle DF, Schwartz DK, Kaar JL (2020) Reduced enzyme dynamics upon multipoint covalent immobilization leads to stability-activity trade-off. J Am Chem Soc 142:3463–3471

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Wu H, Su Z (2020) Enzyme-based hybrid nanoflowers with high performances for biocatalytic, biomedical, and environmental applications. Coordin Chem Rev 416:213342–213359

    Article  CAS  Google Scholar 

  9. Giunta CI, Cea-Rama I, Alonso S, Briand ML, Bargiela R, Coscolin C, Corvini PFX, Ferrer M, Sanz-Aparicio J, Shahgaldian P (2020) Tuning the properties of natural promiscuous enzymes by engineering their nano-environment. ACS Nano 14:17652–17664

    Article  CAS  Google Scholar 

  10. Cao YP, Zhi GY, Han L, Chen Q, Zhang DH (2021) Biosynthesis of benzyl cinnamate using an efficient immobilized lipase entrapped in nano-molecular cages. Food Chem 364:130428–130435

    Article  CAS  PubMed  Google Scholar 

  11. Pinto Brito MJ, Bauer LC, Flores Santos MP, Santos LS, Ferreira Bonomo RC, Ilheu Fontan RdC, Veloso CM (2020) Lipase immobilization on activated and functionalized carbon for the aroma ester synthesis. Micropor Mesopor Mat 309:110576–110583

    Article  CAS  Google Scholar 

  12. Lesniarek A, Chojnacka A, Drozd R, Szymanska M, Gladkowski W (2020) Enantioselective transesterification of allyl alcohols with (E)-4-Arylbut-3-en-2-ol motif by immobilized lecitase (TM) ultra. Catalysts 10:798–812

    Article  CAS  Google Scholar 

  13. Abdelhamid MAA, Meligy AMA, Yeo KB, Lee C-S, Pack SP (2020) Silaffin-3-derived pentalysine cluster as a new fusion tag for one-step immobilization and purification of recombinant Bacillus subtilis catalase on bare silica particles. Int J Biol Macromol 159:1103–1112

    Article  CAS  PubMed  Google Scholar 

  14. Jamwal S, Ranote S, Dautoo U, Chauhan GS (2020) Improving activity and stabilization of urease by crosslinking to nanoaggregate forms for herbicide degradation. In J Biol Macromol 158:521–529

    Article  CAS  Google Scholar 

  15. Kubiak M, Storm K-F, Kampen I, Schilde C (2019) Relationship between cross-linking reaction time and anisotropic mechanical behavior of enzyme crystals. Cryst Growth Des 19:4453–4464

    Article  CAS  Google Scholar 

  16. Doscher MS, Richards FM (1963) Activity of an enzyme in crystalline state-ribonuclease s. J Biol Chem 238:2399–2402

    Article  CAS  Google Scholar 

  17. Voberkova S, Solcany V, Vrsanska M, Adam V (2018) Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. Chemosphere 202:694–707

    Article  CAS  PubMed  Google Scholar 

  18. Sheldon RA, Schoevaart R, Van Langen LM (2005) Cross-linked enzyme aggregates (CLEAs): A novel and versatile method for enzyme immobilization (a review). Biocatal Biotransfor 23:141–147

    Article  CAS  Google Scholar 

  19. Garcia-Galan C, Berenguer-Murcia A, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353:2885–2904

    Article  CAS  Google Scholar 

  20. Hu Y, Shi C-Y, Xun X-M, Huang B-R, You S, Wu F-A, Wang J (2021) Xylanase-polymer conjugates as new catalysts for xylooligosaccharides production from lignocellulose. Biochem Eng J 171:108025–108038

    Article  CAS  Google Scholar 

  21. Bilal M, Zhao Y, Noreen S, Shah SZH, Bharagava RN, Iqbal HMN (2019) Modifying bio-catalytic properties of enzymes for efficient biocatalysis: a review from immobilization strategies viewpoint. Biocatal Biotransfor 37:159–182

    Article  CAS  Google Scholar 

  22. Zerva A, Antonopoulou I, Enman J, Iancu L, Rova U, Christakopoulos P (2018) Cross-linked enzyme aggregates of feruloyl esterase preparations from Thermothelomyces thermophila and Talaromyces wortmannii. Catalysts 8:208–223

    Article  Google Scholar 

  23. Badoei-dalfard A, Karami Z, Malekabadi S (2019) Construction of CLEAs-lipase on magnetic graphene oxide nanocomposite: An efficient nanobiocatalyst for biodiesel production. Bioresource Technol 278:473–476

    Article  CAS  Google Scholar 

  24. Jia J, Zhang W, Yang Z, Yang X, Wang N, Yu X (2017) Novel magnetic cross-linked cellulase aggregates with a potential application in lignocellulosic biomass bioconversion. Molecules 22:269–283

    Article  PubMed Central  Google Scholar 

  25. Hero JS, Romero CM, Pisa JH, Perotti NI, Olivaro C, Martinez MA (2018) Designing cross-linked xylanase aggregates for bioconversion of agroindustrial waste biomass towards potential production of nutraceuticals. Int J Biol Macromol 111:229–236

    Article  CAS  PubMed  Google Scholar 

  26. Lopez-Gallego F, Guisan JM, Betancor L (2013) Glutaraldehyde-Mediated Protein Immobilization. In: Guisan JM, (Ed) Immobilization of Enzymes and Cells, 3rd Edition.Humana Press Inc. USA

  27. Oliveira Mafra AC, Ulrich LG, Kornecki JF, Fernandez-Lafuente R, Tardioli PW, de Arruda Ribeiro MP (2019) Combi-CLEAs of glucose oxidase and catalase for conversion of glucose to gluconic acid eliminating the hydrogen peroxide to maintain enzyme activity in a bubble column reactor. Catalysts 9:657–669

    Article  Google Scholar 

  28. Amaral-Fonseca M, Kopp W, Camargo Giordano RdL, Fernandez-Lafuente R, Tardioli PW (2018) Preparation of magnetic cross-linked amyloglucosidase aggregates: solving some activity problems. Catalysts 8:496–506

    Article  Google Scholar 

  29. Razib MSM, Abd Rahman RNZR, Shariff FM, Ali MSM (2020) Biochemical and structural characterization of cross-linked enzyme aggregates (CLEAs) of organic solvent tolerant protease. Catalysts 10:55–71

    Article  CAS  Google Scholar 

  30. Galvis M, Barbosa O, Ruiz M, Cruz J, Ortiz C, Torres R, Fernandez-Lafuente R (2012) Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Process Biochem 47:2373–2378

    Article  CAS  Google Scholar 

  31. Jia R, Hu Y, Liu L, Jiang L, Zou B, Huang H (2013) Enhancing catalytic performance of porcine pancreatic lipase by covalent modification using functional ionic liquids. Acs Catal 3:1976–1983

    Article  CAS  Google Scholar 

  32. Boudrant J, Woodley JM, Fernandez-Lafuente R (2020) Parameters necessary to define an immobilized enzyme preparation. Process Biochem 90:66–80

    Article  CAS  Google Scholar 

  33. Paitaid P, Kittikun A (2021) Enhancing immobilization of Aspergillus oryzae ST11 lipase on polyacrylonitrile nanofibrous membrane by bovine serum albumin and its application for biodiesel production. Prep Biochem Biotech 51:536–549

    Article  CAS  Google Scholar 

  34. Kim HS, Eom D, Koo Y-M, Yingling YG (2016) The effect of imidazolium cations on the structure and activity of the Candida antarctica Lipase B enzyme in ionic liquids. Phys Chem Chem Phys 18:22062–22069

    Article  CAS  PubMed  Google Scholar 

  35. Suo H, Xu L, Xue Y, Qiu X, Huang H, Hu Y (2020) Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: Improvement of catalytic performance. Carbohyd Polym 234:115914–115922

    Article  CAS  Google Scholar 

  36. Parveen S, Asgher M, Bilal M (2021) Lignin peroxidase-based cross-linked enzyme aggregates (LiP-CLEAs) as robust biocatalytic materials for mitigation of textile dyes-contaminated aqueous solution. Environ Technol Inno 21:101226–101256

    Article  CAS  Google Scholar 

  37. Persson M, Bornscheuer UT (2003) Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. J Mol Catal B-Enzym 22:21–27

    Article  CAS  Google Scholar 

  38. Suo H, Xu L, Xu C, Chen H, Yu D, Gao Z, Huang H, Hu Y (2018) Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O(4)-Chitosan nanocomposites. Int J Biol Macromol 119:624–632

    Article  CAS  PubMed  Google Scholar 

  39. Zhang C, Zhang L, Zhang Y, Huang H, Hu Y (2016) Study on the Stability and Enzymatic Property Improvement of Porcine Pancreas Lipase Modified by Ionic Liquids Using Molecular Simulation. Acta Chim Sinica 74:74–80

    Article  CAS  Google Scholar 

  40. Suo H, Xu L, Xu C, Qiu X, Huang H, Hu Y (2019) Enhanced catalytic performance of lipase covalently bonded on ionic liquids modified magnetic alginate composites. J Colloid Interf Sci 553:494–502

    Article  CAS  Google Scholar 

  41. Wahlstroem RM, Suurnaekki A (2015) ChemInform abstract: enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. J Cheminformatics 46:336–356

    Google Scholar 

  42. Xiang X, Ding S, Suo H, Xu C, Gao Z, Hu Y (2018) Fabrication of chitosan-mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization. Carbohyd Polym 182:245–253

    Article  CAS  Google Scholar 

  43. Lau RM, van Rantwijk F, Seddon KR, Sheldon RA (2000) Lipase-catalyzed reactions in ionic liquids. Org Lett 2:4189–4191

    Article  CAS  Google Scholar 

  44. Jiang Y, Guo C, Xia H, Mahmood I, Liu C, Liu H (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. J Mol Catal B-Enzym 58:103–109

    Article  CAS  Google Scholar 

  45. Lai J-Q, Li Z, Lue Y-H, Yang Z (2011) Specific ion effects of ionic liquids on enzyme activity and stability. Green Chem 13:1860–1868

    Article  CAS  Google Scholar 

  46. Zhang C, Dong X, Guo Z, Sun Y (2018) Remarkably enhanced activity and substrate affinity of lipase covalently bonded on zwitterionic polymer-grafted silica nanoparticles. J Colloid Interf Sci 519:145–153

    Article  CAS  Google Scholar 

  47. Fan Y, Wang X, Zhang L, Li J, Yang L, Gao P, Zhou Z (2018) Lipase-catalyzed synthesis of biodiesel in a hydroxyl-functionalized ionic liquid. Chem Eng Res Des 132:199–207

    Article  CAS  Google Scholar 

  48. HajKacem S, Galai S, Hernandez Fernandez FJ, Perez de los Rios A, Smaali I, Quesada Medina J (2020) Bioreactor Membranes for Laccase Immobilization Optimized by Ionic Liquids and Cross-Linking Agents. App. Biochem Biotech 190: 1–17

  49. Laane C, Boeren S, Vos K, Veeger C (2009) Rules for Optimization of Biocatalysis in Organic Solvents. Biotechnol Bioeng 102:2–8

    Article  CAS  PubMed  Google Scholar 

  50. Yang L, Dordick JS, Garde S (2004) Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys J 87:812–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wangikar PP, Michels PC, Clark DS, Dordick JS (1997) Structure and function of subtilisin bpn’ solubilized in organic solvents. J Am Chem Soc 119:70–76

    Article  CAS  Google Scholar 

  52. Salgin S, Cakal M, Salgin U (2020) Kinetic resolution of racemic naproxen methyl ester by magnetic and non-magnetic cross-linked lipase aggregates. Prep Biochem Biotech 50:148–155

    Article  CAS  Google Scholar 

  53. Miao C, Li H, Zhuang X, Wang Z, Yang L, Lv P, Luo W (2019) Synthesis and properties of porous CLEAs lipase by the calcium carbonate template method and its application in biodiesel production. Rsc Adv 9:29665–29675

    Article  CAS  Google Scholar 

  54. Wahab MKHA, El-Enshasy HA, Abu Bakar FD, Murad AMA, Jahim JM, Illias RM (2019) Improvement of cross-linking and stability on cross-linked enzyme aggregate (CLEA)-xylanase by protein surface engineering. Process Biochem 86:40–49

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by the National Natural Science Foundation of China (No. 21406093), Natural Science Foundation of Jiangsu Province (BK20140529), Research Foundation on full coverage inspection system of University Laboratory (GS2019YB07), Open Project Program of State Key Laboratory of Food Science and Technology of Jiangnan University (SKLF-KF-201919), Key University Science Research Project of Jiangsu Province (14KJB530001), China Postdoctoral Science Foundation (2014M550271), and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

Xia Jiaojiao: investigation and writing—original draft. Yan Yan: conceptualization, methodology, and formal analysis. Zou Bin: conceptualization, supervision, resources, and writing—review and editing. Liu Feng: investigation, resources, and writing—review and editing

Corresponding author

Correspondence to Zou Bin.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted. We confirm that the manuscript has not been published or under consideration for publication elsewhere. Further, this submission has been approved by the institution where the study was conducted. All the authors are aware of the submission and agree with its publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiaojiao, X., Yan, Y., Bin, Z. et al. Improved catalytic performance of carrier-free immobilized lipase by advanced cross-linked enzyme aggregates technology. Bioprocess Biosyst Eng 45, 147–158 (2022). https://doi.org/10.1007/s00449-021-02648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02648-x

Keywords

Navigation