Skip to main content
Log in

Surface properties and heavy metals chelation of lipopeptides biosurfactants produced from date flour by Bacillus subtilis ZNI5: optimized production for application in bioremediation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The present study summarizes the valorization of date flour by the production of lipopeptide biosurfactant (BioS) by Bacillus subtilis ZNI5 (MW091416). A Taguchi design permitted the formulation of a medium composed only of 6% date flour and 0.5% yeast extract within 2 days of incubation at 150 rpm with a maximal surface tension (ST) reduction of about 27.8 mN/m. The characterization of the lipopeptide shows a CMC value of about 400 mg/L with a minimal ST of 30 mN/m and an ability to disperse oil to about 80 mm at 800 mg/L. Having reduced phytotoxicity, the ZNI5 BioS and ZNI5 strain were assayed for Copper and Cobalt chelation and biosorption. The improvement of the germination index of radish seeds irrigated by the treated contaminated water showed the great potential application of ZNI5 lipopeptide in the bioremediation of heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data sets supporting the conclusions of this article are included in the article.

Abbreviations

ZNI5 BioS:

Biosurfactant produced by Bacillus subtilis ZNI5

References

  1. Al-Dhabi NA, Esmail A, Arasu MV (2020) Enhanced production of biosurfactant from Bacillus subtilis Strain Al-Dhabi-130 under solid-state fermentation using date molasses from saudi arabia for bioremediation of crude-oil-contaminated soils. Int J Environ Res Public Health 17(22):8446

    Article  CAS  PubMed Central  Google Scholar 

  2. Amodu OS, Ntwampe SKO, Ojumu TV (2014) Optimization of biosurfactant production by Bacillus licheniformis STK 01 grown exclusively on Beta vulgaris waste using response surface methodology. BioResour 9(3):5045–5065

    Article  Google Scholar 

  3. Ayangbenro AS, Babalola OO (2017) A New strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  PubMed Central  Google Scholar 

  4. Banik S, Das KC, Islam MS, Salimullah M (2013) Recent advancements and challenges in microbial bioremediation of heavy metals contamination. JSM Biotechnol Biomed Eng 2(1):1035

    Google Scholar 

  5. Bartal A, Vigneshwari A, Bóka B, Vörös M, Takács I, Kredics L, Manczinger L, Varga M, Vágvölgyi C, Szekeres A (2018) Effects of different cultivation parameters on the production of surfactin variants by a Bacillus subtilis strain. Mol 23(10):2675

    Article  Google Scholar 

  6. Bertrand B, Martínez-Morales F, Rosas-Galván NS, Morales-Guzmán D, Trejo-Hernández MR (2018) Review statistical design, a powerful tool for optimizing biosurfactant production: a review. Col Interf 2(36):2–18

    Google Scholar 

  7. Bouassida M, Chaabouni Ellouz S, Ghribi D (2017) Improved biosurfactant production by Bacillus subtilis SPB1 mutant obtained by random mutagenesis and its application in enhanced oil in a sand system. J Microbiol Biotechnol 28:1

    Google Scholar 

  8. Camacho-Chab JC, Guézennec J, Chan-Bacab MJ, Ríos-Leal E, Sinquin C, Muñiz-Salazar R, del C. De la Rosa-García S, Reyes-Estebanez M, Ortega-Morales BT (2013) Emulsifying activity and stability of a non-toxic bioemulsifier synthesized by Microbacterium sp. MC3B-10. Int J Mol Sci 14(9):18959–18972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao X-H, Liao Z-Y, Wang C-L, Yang W-Y, Lu M-F (2009) Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities. Brazil J Microbiol 40:373–379

    Article  CAS  Google Scholar 

  10. Chakraborty J, Das S (2014) Biosurfactant-based bioremediation of toxic metals. Microbial Biodegr Bioremed 2014:167–201

    Article  Google Scholar 

  11. Chandankere R, Yao J, Cai M, Choi MMF (2014) Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122:140–148

    Article  CAS  Google Scholar 

  12. Chandran P, Das N (2010) Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int J Eng Sci Technol 2:6942–6953

    Google Scholar 

  13. Cho KM, Math RK, Hong SY, Md.-Asraful SI, Mandanna DK, Cho JJ, Geun M, Jong Y, Kima M, Yun HD (2009) Iturin produced by Bacillus pumilus HY1 from Korean soybean sauce (kanjang) inhibits growth of aflatoxin producing fungi. Food Control 20(4):402–406

    Article  CAS  Google Scholar 

  14. Chooklin CS, Petmeaun S, Maneerat S, Saimmai A (2014) Isolation and characterization of a biosurfactant from Deinococcus caeni PO5 using jackfruit seed powder as a substrate. An Microbiol 64:1007–1020

    Article  CAS  Google Scholar 

  15. Chooklin CS, Phertmean S, Cheirsilp B, Maneerat S, Saimmai A (2013) Utilization of palm oil mill effluent as a novel and promising substrate for biosurfactant production by Nevskia ramosa NA3. Songk J Sci Technol 35:167–176

    CAS  Google Scholar 

  16. Da Silva IA, Mendonça Resende AH, Padilha da Rocha e Silva NM, Ferreira Brasileiro PP, de Amorim JDP, de Luna JM, Rufino RD, dos Santos VA, Sarubbo LA (2018) Application of biosurfactants produced by Bacillus cereus and Candida sphaerica in the bioremediation of petroleum derivative in soil and water. Chem Eng Transact 64(2018):553–558

    Google Scholar 

  17. da Silva VL, Lovaglio RB, Tozzi HH, Takaki M, Contiero J (2015) Rhamnolipids: a new application in seeds development. J Med Biol Sci Res 1(8):100–106

    Google Scholar 

  18. Das P, Mukherjee S, Sen R (2009) Biosurfactant of marine origin exhibiting heavy metal remediation properties. Biores Technol. https://doi.org/10.3303/CET1227011

    Article  Google Scholar 

  19. De Almeida DG, de Cássia FRS, Silva Da, Luna JM, Rufino RD, Santos VA, Banat IM, Sarubbo LA (2016) Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01718

    Article  PubMed  PubMed Central  Google Scholar 

  20. De Souza Sobrinho HB, de Luna JM, Rufino RD, Sarubbo L (2013) Assessment of toxicity of a biosurfactant from Candida sphaerica UCP 0995 cultivated with industrial residues in a bioreactor. Elect J Biotechnol. https://doi.org/10.2225/vol16-issue4

    Article  Google Scholar 

  21. Diaz MA, De Ranson IU, Dorta B, Banat IM, Blazquez ML, Gonzalez F, Muñoz JA, Ballester A (2015) Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil Sed Cont: An Int J 24(1):16–29

    CAS  Google Scholar 

  22. Dixit R, Wasiulla MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  Google Scholar 

  23. Durval IJB, Resende AHM, Figueiredo MA, Luna JM, Rufino RD, Sarubbo LA (2019) Studies on biosurfactants produced using Bacillus cereus isolated from seawater with biotechnological potential for marine oil-spill bioremediation. J Surf Deterg 22:349–363

    Article  CAS  Google Scholar 

  24. El-Bestawy E, Helmy S, Hussien H, Fahmy M (2013) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Wat Sci 3(1):181–192

    Article  Google Scholar 

  25. Feng J-Q, Gang H-Z, Li D-S, Liu J-F, Yang S-Z, Mu B-Z (2019) Characterization of biosurfactant lipopeptide and its performance evaluation for oil-spill remediation. RSC Adv 9:9629–9632

    Article  CAS  Google Scholar 

  26. Fenibo EO, Douglas SI, Stanley HO (2019) A review on microbial surfactants: production, classifications, properties and characterization. J Adv Microbiol 18(3):1–22

    Article  Google Scholar 

  27. Fletcher J (1991) A brief overview of plant toxicity testing. In: Goruch JW, Lower WR, Lewis MA, Wang W (eds) Plants for Toxicity assessment, pp 1–11, Philadelphia

  28. Fomina M, Gadd GM (2013) Biosorption: current perspectives on concept, definition and application. Biores Technol. https://doi.org/10.1016/j.biortech.2013.12.102

    Article  Google Scholar 

  29. Freitas BG, Brito JGM, Brasileiro PPF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Formulation of a commercial biosurfactant for application as a dispersant of petroleum and by-products spilled in oceans. Front Microbiol 7:646

    Article  Google Scholar 

  30. Freire A, De A, Simonelli G, De Jesus AD, Druzian J (2020) Surfactin production using papaya peel aqueous extract as substrate and its application for iron adsorption. Res Soc Develop 9(7):1–26

    Article  Google Scholar 

  31. Gomaa EZ, El-Meihy RM (2019) Bacterial biosurfactant from Citrobacter freundii MG812314.1 as a bioremoval tool of heavy metals from wastewater. Bul Nat Res Center 43:69

    Article  Google Scholar 

  32. Hentati D, Chebbi A, Hadrich F, Frikha I, Rabanal F, Sayadi S, Manresa A, Chamkha M (2019) Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicol Environ Saf 167:441–449

    Article  CAS  PubMed  Google Scholar 

  33. Hu F, Liu Y, Li S (2019) Rational strain improvement for surfactin production: enhancing the yield and generating novel structures. Microbial Cell Fact 18:42

    Article  Google Scholar 

  34. Huang W, Liu Z (2013) Biosorption of Cd(II)/Pb(II) from aqueous solution by biosurfactant-producing bacteria: isothem kinetic characteristics and mechanism studies. Col Surf B 105:113–119

    Article  CAS  Google Scholar 

  35. Jemil N, Ayed HB, Hmidet N, Nasri M (2016) Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon. World J Microbiol 32:175

    Article  Google Scholar 

  36. Jimoh A, Lin J (2019) Production and characterization of lipopeptide biosurfactant producing Paenibacillus sp. D9 and its biodegradation of diesel fuel. Int J Environ Sci Technol 16:1. https://doi.org/10.1007/s13762-019-02341-3

    Article  CAS  Google Scholar 

  37. Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Biores Technol 99:195–199

    Article  CAS  Google Scholar 

  38. Kapadia SG, Yagnik BN (2013) Current trend and potential for microbial biosurfactants. J Exp Biol Sci 4(1):1–8

    CAS  Google Scholar 

  39. Kapahi M, Sachdeva S (2019) Bioremediation options for heavy metal pollution. J Health Pol 9(24):191–203

    Google Scholar 

  40. Karbalaei-Heidari HR, Taghavi L, Hasanizadeh P (2019) Functional evaluation and physicochemical characterization of a lipopeptide biosurfactant produced by the Stenotrophomonas sp. IE-93. Ir J Sci Technol Trans A Sci 43:1447–1455

    Article  Google Scholar 

  41. Krawczyńska M, Kołwzan B, Rybak J, Gediga K, Shcheglova NS (2012) The Influence of biopreparation on seed germination and growth. Pol J Environ Stud 21(6):1697–1702

    Google Scholar 

  42. Karwowska E, Andrzejewska-Morzuch D, Maria Łebkowska M, Tabernacka A, Wojtkowska M, Telepko A, Agnieszka Konarzewska A (2014) Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. J Hazard Mater 264:203–210

  43. Kim KM, Lee JY, Kim CK, Kang JS (2009) Isolation and characterization of surfactin produced by Bacillus polyfermenticus KJS-2. Archiv Pharm Res 32:711–715

    Article  CAS  Google Scholar 

  44. Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proceed Nat Acad Sci 112:14900–14905

    Article  CAS  Google Scholar 

  45. Lechuga M, Fernández-Serrano M, Jurado E, Núñez-Olea J, Ríos F (2016) Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicol Environ Saf 125:1–8

    Article  CAS  PubMed  Google Scholar 

  46. Lémery E, Briançon S, Chevalier Y, Bordes C, Oddos T, Gohier A, Bolzinger M-A (2015) Skin toxicity of surfactants: structure/toxicity relationships. Col Surf A Physicochem Eng Asp 469:166–179

    Article  Google Scholar 

  47. Liu J-F, Mbadinga SM, Yang S-Z, Gu J-D, Mu B-Z (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16:4814–4837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liwarska-Bizukojc E, Urbaniak M (2007) Evaluation of phytotoxic effect of wastewater contaminated with anionic surfactants. Biotechnol 1(76):203–214

    Google Scholar 

  49. Luna JM, Rufino RD, Jara AMAT, Brasileiro PPF, Sarubbo LA (2015) Environmental applications of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Col Surf A Physicochem Eng Asp 480(5):413–418

    Article  CAS  Google Scholar 

  50. Luna JM, Rufino RD, Sarubbo LA, Campos-Takaki GM (2013) Characterization, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Col Surf B Biointerf 102:202–209

    Article  CAS  Google Scholar 

  51. Luna JM, Rufino RQ, Campos-Takakia GM, Sarubbo LA (2012) Properties of the biosurfactant produced by Candida Sphaerica cultivated in low-cost substrates. Chem Eng Transact 27:67–72

    Google Scholar 

  52. Mani P, Sivakumar P, Balan SS (2016) Economic production and oil recovery efficiency of a lipopeptide biosurfactant from a novel marine bacterium Bacillus simplex. Achiev Life Sci 10(1):102–110

    Google Scholar 

  53. Mao X, Jiang R, Xiao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435

    Article  CAS  PubMed  Google Scholar 

  54. Maurya PK, Malik DS, Yadav KK, Kumar A, Kumar S, Kamya K (2019) Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: possible human health risks evaluation. Toxicol Rep 6:472–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Md Badrul NHH, Ibrahim MF, Ramli N, Abd-Aziz S (2019) Production of biosurfactant produced from used cooking oil by Bacillus sp. HIP3 for heavy metals removal. Mol 24:2617

    Article  Google Scholar 

  56. Meena KR, Sharma A, Kumar R, Kanwar SS (2020) Two factor at a time approach by response surface methodology to aggrandize the Bacillus subtilis KLP2015 surfactin lipopeptide to use as antifungal agent. J King Saud Univ Sci 32:1

    Article  Google Scholar 

  57. Mnif I, Ghribi D (2015) Lipopeptide surfactants: production, recovery and pore forming capacity. Pep 71:100–112

    Google Scholar 

  58. Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Pept Sci 104:129–147

    Article  CAS  Google Scholar 

  59. Mnif I, Ghribi D (2015) Microbial derived surface active compounds: properties and screening concept. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-015-1866-6

    Article  PubMed  Google Scholar 

  60. Mnif I, Ellouze-Chaabouni S, Ghribi D (2012) Economic production of Bacillus subtilis SPB1 biosurfactant using local agro-industrial wastes and its application in enhancing solubility of diesel. J Chem Technol Biotechnol 88:779–787

    Article  Google Scholar 

  61. Mnif I, Elleuch M, Ellouze Chaabouni S, Ghribi D (2013) Bacillus subtilis SPB1 biosurfactant: production optimization and insecticidal activity against the carob moth Ectomyelois ceratoniae. Crop Protect 50:66–72

  62. Mnif I, Sahnoun R, Ellouze-Chaabouni S, Ghribi D (2013) Evaluation of B. subtilis SPB1 biosurfactants’ potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environ Sci Pol Res. https://doi.org/10.1007/s11356-013-1894-4

  63. Mnif I, Mnif S, Sahnoun R, Maktouf S, Ayedi Y, Ellouze-Chaabouni S, Ghribi D (2015) Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ Sci Pol Res. https://doi.org/10.1007/s11356-015-4488-5

    Article  Google Scholar 

  64. Mnif I, Fendri R, Ghribi D (2015) Malachite green bioremoval by a newly isolated strain Citrobacter sedlakii RI11; enhancement of the treatment by biosurfactant addition. Wat Sci Technol 72(8):1283–1293

    Article  CAS  Google Scholar 

  65. Mnif I, Fendri R, Ghribi D (2015) Biosorption of Congo Red from aqueous solution by Bacillus weihenstephanensis RI12; effect of SPB1 biosurfactant addition on biodecolorization potency. Wat Sci Technol 72(6):865–874

    Article  CAS  Google Scholar 

  66. Mnif I, Hammami I, Triki MA, Azabou MC, Ellouze-Chaabouni S, Ghribi D (2015) Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Environ Sci Pol Res 22(22):18137–18147

    Article  CAS  Google Scholar 

  67. Mnif I, Ellouze-Chaabouni S, Ayedi Y, Ghribi D (2014) Treatment of diesel- and kerosene-contaminated water by B. subtilis SPB1 biosurfactant-producing strain. Wat Environ Res 86:707–716

    Article  CAS  Google Scholar 

  68. Mnif I, Maktouf S, Fendri R, Kriaa M, Ellouze S, Ghribi D (2016) Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition. Environ Sci Pol Res 23(2):1742–1754

    Article  CAS  Google Scholar 

  69. Mnif I, Grau-Campistany A, Coronel-León J, Hammami I, Triki MA, Manresa A, Ghribi D (2016) Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ Sci Pol Res 23:6690–6699

    Article  CAS  Google Scholar 

  70. Mnif I, Sahnoun R, Ellouz-Chaabouni S, Ghribi D (2017) Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium. Process Saf Environ Protect 109:72–81

    Article  CAS  Google Scholar 

  71. Mnif I, Bouallegue A, Mekki S, Ghribi D (2021) Valorization of date juice by the production of lipopeptide biosurfactants by a Bacillus mojavensis BI2 strain: bioprocess optimization by response surface methodology and study of surface activities. Bioprocess Biosys Eng. https://doi.org/10.1007/s00449-021-02606-7

    Article  Google Scholar 

  72. Moshtagh B, Hawboldt K, Zhang B (2018) Optimization of biosurfactant production by Bacillus Subtilis N3–1P using the brewery waste as the carbon source. Environ Technol 40(25):3371–3380

    Article  PubMed  Google Scholar 

  73. Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85(1–2):111–125

    Article  CAS  PubMed  Google Scholar 

  74. Negin C, Ali S, Xie Q (2017) Most common surfactants employed in chemical enhanced oil recovery. Petrol 3:197–211

    Article  Google Scholar 

  75. Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20(2):121–129

    Article  CAS  PubMed  Google Scholar 

  76. Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Biores Technol 99:1589–1595

  77. Purwasena IA, Astuti DI, Syukron M, Amaniyah M, Sugai Y (2019) Stability test of biosurfactant produced by Bacillus licheniformis DS1 using experimental design and its application for MEOR. J Petrol Sci Eng 183:106383

    Article  CAS  Google Scholar 

  78. Qiao N, Shao Z (2010) Isolation and characterization of a new product by surfactant hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. J Appl Microbiol 108:1207–1216

    Article  CAS  PubMed  Google Scholar 

  79. Rajeshkumar S, Li X (2018) Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol Rep 5:288–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ravindran A, Sajayan A, Priyadharshini GB, Selvin J, Kiran GS (2020) Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00222

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rebello S, Asok AK, Mundayoor S, Jisha M (2014) Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett 12:275–287

    Article  CAS  Google Scholar 

  82. Rinallo C, BenniciCenni AA (1988) Effects of two surfactants on Triticum durum Desf. Plantlets. Environ Exp Bot 28(4):367–374

    Article  CAS  Google Scholar 

  83. Rodrigues RL, Teixeira AJ, Oliveira R (2006) Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochem Eng J 32:135–142

    Article  CAS  Google Scholar 

  84. Rongsayamanont W, Soonglerdsongpha S, Khondee N, Pinyakong O, Tongcumpou C, Sabatini DA, Luepromchai E (2017) Formulation of crude oil spill dispersants based on the HLD concept and using a lipopeptide biosurfactant. J Hazard Mater 334:168–177

    Article  CAS  PubMed  Google Scholar 

  85. Rufino RD, Luna JM, Takaki GMC, Sarubbo LA (2014) Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Elect J Biotechnol 17(1):34–38

    Article  Google Scholar 

  86. Sarubbo LA, Rocha RB Jr, Luna JM, Rufino RD, Santos VA, Banat IM (2015) Some aspects of heavy metals contamination remediation and role of biosurfactants. Chem Ecol 31(8):707–723

    Article  CAS  Google Scholar 

  87. Saimmai A, Sobhon V, Maneerat S (2011) Molasses as a whole medium for biosurfactants production by Bacillus Strains and their application. Appl Biochem Biotechnol 165(1):315–335

    Article  CAS  PubMed  Google Scholar 

  88. Selvi A, Rajasekar A, Theerthagiri J, Ananthaselvam A, Sathishkumar K, Madhavan J, Rahman PKSM (2019) Integrated remediation processes toward heavy metal removal/recovery from various environments—a review. Front Environ Sci. https://doi.org/10.3389/fenvs.2019.00066

    Article  Google Scholar 

  89. Sharma S, Verma R, Pandey LM (2019) Crude oil degradation and biosurfactant production abilities of isolated Agrobacterium fabrum SLAJ731. Biocatal Agricul Biotechnol 21:101322

    Article  Google Scholar 

  90. Sharma S, Datta P, Kumar B, Tiwari P, Pandey LM (2019) Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815. Biodegrad 30:301–312

    Article  CAS  Google Scholar 

  91. Sharma S, Pandey L (2020) Production of biosurfactant by Bacillus subtilis RSL-2 isolated from sludge and biosurfactant mediated degradation of oil. Biores Technol. https://doi.org/10.1016/j.biortech.2020.123261

    Article  Google Scholar 

  92. Shih I-L, Kuo C-Y, Hsieh F-C, Kao S-S (2008) Use of surface response methodology to optimize culture conditions for iturin A production by Bacillus subtilis in solid-state fermentation. J Chin Inst Chem Eng 39(6):635–643

    Article  CAS  Google Scholar 

  93. Silva RDCF, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542

    Article  PubMed Central  Google Scholar 

  94. Singh AK, Cameotra SS (2013) Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil. Environ Sci Pol Res. https://doi.org/10.1007/s11356-013-1752-4

    Article  Google Scholar 

  95. Singh P, Patil Y, Rale V (2018) Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol. https://doi.org/10.1111/jam.14057

    Article  PubMed  Google Scholar 

  96. Soares SRCF, de Almeida DG, Brasileiro PPF, Rufino RD, de Luna JM, Sarubbo LA (2018) Production, formulation and cost estimation of a commercial biosurfactant. Biodegr. https://doi.org/10.1007/s10532-018-9830-4

    Article  Google Scholar 

  97. Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Col Surf B: Biointerf 85:174–181

    Article  CAS  Google Scholar 

  98. Stahlman PW, Currie RS, El-Hamid MA (1997) Nitrogen carrier and surfactant increase foliar herbicide injury in winter wheat (Triticum aestivum). Weed Technol 11(1):7–12

    Article  CAS  Google Scholar 

  99. Sun D, Liao J, Sun L, Wang Y, Liu Y, Deng Q, Zhang N, Xu D, Fang Z, Wang W, Gooneratne R (2019) Effect of media and fermentation conditions on surfactin and iturin homologues produced by Bacillus natto NT-6: LC–MS analysis. AMB Express 9:120

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sumiahadi A, Acar R (2018) A review of phytoremediation technology: heavy metals uptake by plants. IOP Conf Ser Earth Environ Sci 142(1):012–023

    Google Scholar 

  101. Swapna TH, Papathoti NK, Reddy G (2016) Bioreduction of Cr (VI) by biosurfactant producing marine bacterium Bacillus subtilis SHB 13. J Sci Ind Res 2016:5

    Google Scholar 

  102. Taran M, Mohamadian E, Asadi S, Bakhtiyari S (2012) Surface active agent production from olive oil in high salt conditions and its process optimization. Pol J Chem Technol 14(4):30–34

    Article  Google Scholar 

  103. Tiquia SM, Tam NFY, Hodgkiss IJ (1996) Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ Pol 93:249–256

    Article  CAS  Google Scholar 

  104. Urum K, Pekdemir T, Gopur M (2003) Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions. Process Saf Environ Protect 81(3):203–209

    Article  CAS  Google Scholar 

  105. Valadez-Vega C, Zúñiga-Pérez C, Quintanar-Gómez S, Morales-González JA, Madrigal-Santillán E, Villagómez-Ibarra JR, Sumaya-Martínez MT, García-Paredes JD (2011) Lead, cadmium and cobalt (Pb, Cd, and Co) leaching of glass-clay containers by pH effect of food. Int J Mol Sci 12(4):2336–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Verma N, Sharma R (2017) Bioremediation of toxic heavy metals: a patent review. Recent Patent Biotechnol 11(3):171–187

    Article  CAS  Google Scholar 

  107. Verma R, Swati S, Kundu LM, Pandey LM (2020) Experimental investigation of molasses as a sole nutrient for the production of an alternative metabolite biosurfactant. J Water Process Eng 38:101632

    Article  Google Scholar 

  108. Wang Q, Chen S, Zhang J, Sun M, Liu Z, Yu Z (2008) Co-producing lipopeptides and poly-[gamma]-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects. Biores Technol 99:3318–3323

    Article  CAS  Google Scholar 

  109. Yang Z, Zhang Z, Chai L, Wang Y, Liu Y, Xiao R (2016) Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J Hazard Mater 301:145–152

    Article  CAS  PubMed  Google Scholar 

  110. Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 6:722–729

    Article  Google Scholar 

  111. Zouari R, Ellouze-Chaabouni S, Ghribi-Aydi D (2014) Optimization of Bacillus subtilis SPB1 biosurfactant production under solid-state fermentation using by-products of a traditional olive mill factory. Achiev Life Sci 8:162–169

    Google Scholar 

  112. Zouboulis A, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39(8):909–916

    Article  CAS  Google Scholar 

  113. Zhu Z, Zhang B, Cai Q, Ling J, Lee K, Chen B (2020) Fish waste based lipopeptide production and the potential application as a bio-dispersant for oil spill control. Front Bioeng Biotechnol 8:734

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from the Tunisian Ministry of Higher Education, Scientific Research and Technology. It is a part of a research project on biosurfactant production, characterization and application.

Funding

Funding for this research work was granted by the Ministry of Higher Education and Research of Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

All authors directly participated in the planning, execution, or analysis of this study. All authors read and approved the final manuscript. The first Author Inès Mnif is an Assistant Teacher in the Faculty of Science of Gabes, University of Gabes, Tunisia and Member of the Laboratory of Biochemistry and Enzymatic Engineering and The Laboratory of Plants Enhancement and Agro-ressources Valorization of the National School of Engineering of Sfax, Tunisia. The second Author Amir Bouallegue is a Doctor Student and Member of the Laboratory of Plants Enhancement and Agro-ressources Valorization of the National School of Engineering of Sfax, Tunisia. The third Author Dhouha Ghribi is a Professor in the Higher Institute of Biotechnology of Sfax, Tunisia and Member of the Laboratory of Plants Enhancement and Agro-ressources Valorization of the National School of Engineering of Sfax, Tunisia. The first author of these paper Dr. Inès Mnif and the second author Dr. Amir Bouallegue elaborated the experimental parts of the present work. The first author Dr. Inès Mnif elaborated the plan of the work and wrote this paper. Professor Dhouha Ghribi helped in the elaboration of the plan of this work and corrected this paper.

Corresponding author

Correspondence to Inès Mnif.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors read the final manuscript and approved its submission to Bioprocess and Biosystems Engineering.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnif, I., Bouallegue, A., Bouassida, M. et al. Surface properties and heavy metals chelation of lipopeptides biosurfactants produced from date flour by Bacillus subtilis ZNI5: optimized production for application in bioremediation. Bioprocess Biosyst Eng 45, 31–44 (2022). https://doi.org/10.1007/s00449-021-02635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02635-2

Keywords

Navigation