Skip to main content
Log in

Modified cobalt-manganese oxide-coated carbon felt anodes: an available method to improve the performance of microbial fuel cells

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The novel MnCo2O4 (MCO/CF), CNTs-MnCo2O4 (CNTs-MCO/CF) and MnFe2O4-MnCo2O4 (MFO-MCO/CF) electrodes were prepared on carbon felt (CF) by simple hydrothermal and coating method as anodes for MFC. The modified anodes combine the electrocatalytic properties of transition metal oxides (TMOs), the high electrical conductivity of CNTs and the good biocompatibility of CF. These anodes play a synergistically role in the synthesis of structural, to realize high-efficiency electron transfer, low resistance and sufficient space for microbial colonization, while also ensuring high power density. The maximum power density of the composite electrodes CNTs-MCO/CF and MFO-MCO/CF were 4268 mW/m3 and 3660 mW/m3, respectively. The synergistic effect of multi-component effectively improves the performance of MFC. This work not only offers a good design and preparation concept for functional TMOs composite electrodes, but also provides an important guide for the fabrication of CNTs-doped MFC anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690

    Article  CAS  PubMed  Google Scholar 

  2. Ramesh M, Balakrishnan P, Dhanaprabhu SS et al (2021) Enzyme-modified electrodes for biofuel cells: a comprehensive review. Mater Today Proc 46:3495–3501

    Article  CAS  Google Scholar 

  3. Wang R, Yan M, Li H et al (2018) FeS2 nanoparticles decorated graphene as microbial-fuel-cell anode achieving high power density. Adv Mater 30:e1800618

    Article  PubMed  CAS  Google Scholar 

  4. Cai T, Meng L, Chen G et al (2020) Application of advanced anodes in microbial fuel cells for power generation: a review. Chemosphere 248:125985

    Article  CAS  PubMed  Google Scholar 

  5. Santoro C, Arbizzani C, Erable B et al (2017) Microbial fuel cells: From fundamentals to applications. A review. J Power Sources 356:225–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Y-Q, Huang H-X, Li B et al (2015) Novelly developed three-dimensional carbon scaffold anodes from polyacrylonitrile for microbial fuel cells. J Mater Chem A 3:5110–5118

    Article  CAS  Google Scholar 

  7. Wu W, Xie R, Bai L et al (2012) Direct electrochemistry of Shewanella loihica PV-4 on gold nanoparticles-modified boron-doped diamond electrodes fabricated by layer-by-layer technique. J Nanosci Nanotechnol 12:3903–3908

    Article  CAS  PubMed  Google Scholar 

  8. Fu YB, Liu ZH, Su G et al (2016) Modified carbon anode by MWCNTs/PANI used in marine sediment microbial fuel cell and its electrochemical performance. Fuel Cells 16:377–383

    Article  CAS  Google Scholar 

  9. Ramanavicius S, Ramanavicius A (2020) Conducting polymers in the design of biosensors and biofuel cells. Polymers 13:49

    Article  PubMed Central  CAS  Google Scholar 

  10. Ramanavicius S, Ramanavicius A (2021) Charge transfer and biocompatibility aspects in conducting polymer-based enzymatic biosensors and biofuel cells. Nanomaterials 11:371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kisieliute A, Popov A, Apetrei R-M et al (2019) Towards microbial biofuel cells: improvement of charge transfer by self-modification of microoganisms with conducting polymer – Polypyrrole. Chem Eng J 356:1014–1021

    Article  CAS  Google Scholar 

  12. Richter H, Nevin KP, Jia H et al (2009) Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ Sci 2:506

    Article  CAS  Google Scholar 

  13. Fu Y, Xu Q, Zai X et al (2014) Low electrical potential anode modified with Fe/ferric oxide and its application in marine benthic microbial fuel cell with higher voltage and power output. Appl Surf Sci 289:472–477

    Article  CAS  Google Scholar 

  14. Ramanavicius S, Ramanavicius A (2020) Progress and insights in the application of MXenes as New 2D nano-materials suitable for biosensors and biofuel cell design. Int J Mol Sci 21:9224

    Article  CAS  PubMed Central  Google Scholar 

  15. Jian M, Xue P, Shi K et al (2020) Efficient degradation of indole by microbial fuel cell based Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt anode. J Hazard Mater 388:122123

    Article  CAS  PubMed  Google Scholar 

  16. Ramanavicius A, Oztekin Y, Ramanaviciene A (2014) Electrochemical formation of polypyrrole-based layer for immunosensor design. Sens Actuators B Chem 197:237–243

    Article  CAS  Google Scholar 

  17. Sumisha A, Haribabu K (2018) Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications-a comparative study. Int J Hydrogen Energy 43:3308–3316

    Article  CAS  Google Scholar 

  18. Xing L, Zhongze Gu (2016) Application of entangled multi-wall carbon nanotubes doped poly(3,4-ethylenedioxythiophene) network on the anode to increase the power generation in a microbial fuel cell. J Nanosci Nanotechnol 16:12369–12373

    Article  CAS  Google Scholar 

  19. Faraji S, Ani FN (2015) The development supercapacitor from activated carbon by electroless plating—a review. Renew Sustain Energy Rev 42:823–834

    Article  CAS  Google Scholar 

  20. Jiang Y, Lin L (2012) A two-stage, self-aligned vertical densification process for as-grown CNT forests in supercapacitor applications. Sens Actuators A 188:261–267

    Article  CAS  Google Scholar 

  21. Bruzaite I, Rozene J, Morkvenaite-Vilkonciene I et al (2020) Towards microorganism-based biofuel cells: the viability of saccharomyces cerevisiae modified by multiwalled carbon nanotubes. Nanomaterials 10:954

    Article  CAS  PubMed Central  Google Scholar 

  22. Su F, Lv X, Miao M (2015) High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles. Small 11:854–861

    Article  CAS  PubMed  Google Scholar 

  23. Cheng Q, Yuge R, Nakahara K et al (2015) KOH etched graphite for fast chargeable lithium-ion batteries. J Power Sources 284:258–263

    Article  CAS  Google Scholar 

  24. Peng X, Yu H, Wang X et al (2012) Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells. Bioresour Technol 121:450–453

    Article  CAS  PubMed  Google Scholar 

  25. Zhang C, Liang P, Yang X et al (2016) Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens Bioelectron 81:32–38

    Article  CAS  PubMed  Google Scholar 

  26. Delbari SA, Ghadimi LS, Hadi R et al (2021) Transition metal oxide-based electrode materials for flexible supercapacitors: a review. J Alloys Compd 857:158281

    Article  CAS  Google Scholar 

  27. Mohamed HO, Abdelkareem MA, Obaid M et al (2017) Cobalt oxides-sheathed cobalt nano flakes to improve surface properties of carbonaceous electrodes utilized in microbial fuel cells. Chem Eng J 326:497–506

    Article  CAS  Google Scholar 

  28. Niu Z, Zhou W, Chen J et al (2011) Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ Sci 4:1440–1446

    Article  CAS  Google Scholar 

  29. Lv Z, Xie D, Yue X et al (2012) Ruthenium oxide-coated carbon felt electrode: a highly active anode for microbial fuel cell applications. J Power Sources 210:26–31

    Article  CAS  Google Scholar 

  30. Jenita Rani G, Jothi Rajan MA, Gnana Kumar G (2016) Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye. Res Chem Intermed 43:2669–2690

    Article  CAS  Google Scholar 

  31. Dessie Y, Tadesse S, Eswaramoorthy R (2020) Review on manganese oxide based biocatalyst in microbial fuel cell: nanocomposite approach. Mater Sci Energy Technol 3:136–149

    CAS  Google Scholar 

  32. Fei M, Zhang R, Li L et al (2021) Epitaxial growth of MnFe2O4 nanosheets arrays for supercapacitor. Electrochim Acta 368:137586

    Article  CAS  Google Scholar 

  33. Makkar P, Ghosh NN (2020) Facile synthesis of MnFe2O4 hollow sphere-reduced graphene oxide nanocomposites as electrode materials for all-solid-state flexible high-performance asymmetric supercapacitors. ACS Appl Energy Mater 3:2653–2664

    Article  CAS  Google Scholar 

  34. Singh A, Ojha AK (2020) Designing vertically aligned porous NiCo2O4@MnMoO4 Core@Shell nanostructures for high-performance asymmetric supercapacitors. J Colloid Interface Sci 580:720–729

    Article  CAS  PubMed  Google Scholar 

  35. Yu L, Yuan Y, Tang J et al (2017) Thermophilic Moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2. Bioelectrochemistry 117:23–28

    Article  CAS  PubMed  Google Scholar 

  36. Quan X, Sun B, Xu H (2015) Anode decoration with biogenic Pd nanoparticles improved power generation in microbial fuel cells. Electrochim Acta 182:815–820

    Article  CAS  Google Scholar 

  37. Li Z, Sa L, Li L et al (2021) In situ grown MnCo2O4@NiCo2O4 layered core-shell plexiform array on carbon paper for high efficiency counter electrode materials of dye-sensitized solar cells. Sol Energy Mater Sol Cells 220:110859

    Article  CAS  Google Scholar 

  38. Wu D, Han H, Hong X et al (2020) A novel self-branching MnCo2O4/nanographene hybrid composites on macroporous electrically conductive network as bifunctional electrodes for boosting miniature supercapacitors and sodium ion batteries. J Alloys Compd 846:155720

    Article  CAS  Google Scholar 

  39. Munjal M, Tiwari B, Lalwani S et al (2020) An insight of bioelectricity production in mediator less microbial fuel cell using mesoporous Cobalt Ferrite anode. Int J Hydrogen Energy 45:12525–12534

    Article  CAS  Google Scholar 

  40. Park IH, Christy M, Kim P et al (2014) Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell. Biosens Bioelectron 58:75–80

    Article  CAS  PubMed  Google Scholar 

  41. Saren P, De Adhikari A, Khan S et al (2019) Self-assembled GNS wrapped flower-like MnCo2O4 nanostructures for supercapacitor application. J Solid State Chem 271:282–291

    Article  CAS  Google Scholar 

  42. Tahir K, Miran W, Jang J et al (2020) A novel MXene-coated biocathode for enhanced microbial electrosynthesis performance. Chem Eng J 381:122687

    Article  CAS  Google Scholar 

  43. Koók L, Quéméner D, Bakonyi P et al (2019) Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators. Bioresour Technol 278:279–286

    Article  PubMed  CAS  Google Scholar 

  44. Wang X, Xu L, Song K et al (2019) Synthesis of MnCo2O4@MnCo2S4 core/shell micro-nanostructures on Ni foam for high performance asymmetric supercapacitors. Colloids Surf A 570:73–80

    Article  CAS  Google Scholar 

  45. Cakici M, Kakarla RR, Alonso-Marroquin F (2017) Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem Eng J 309:151–158

    Article  CAS  Google Scholar 

  46. Zhong D, Liu Y, Liao X et al (2018) Facile preparation of binder-free NiO/MnO2-carbon felt anode to enhance electricity generation and dye wastewater degradation performances of microbial fuel cell. Int J Hydrogen Energy 43:23014–23026

    Article  CAS  Google Scholar 

  47. Tahir K, Miran W, Jang J et al (2021) Nickel ferrite/MXene-coated carbon felt anodes for enhanced microbial fuel cell performance. Chemosphere 268:128784

    Article  CAS  PubMed  Google Scholar 

  48. Liu D, Wang R, Chang W et al (2018) Ti3C2MXene as an excellent anode material for high-performance microbial fuel cells. J Mater Chem A 6:20887–20895

    Article  CAS  Google Scholar 

  49. Jin X, Guo F, Liu Z et al (2018) Enhancing the electricity generation and nitrate removal of microbial fuel cells with a novel denitrifying exoelectrogenic strain EB-1. Front Microbiol 9:2633

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meitl LA, Eggleston CM, Colberg PJS et al (2009) Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes. Geochim Cosmochim Acta 73:5292–5307

    Article  CAS  Google Scholar 

  51. Pham CA, Jung SJ, Phung NT et al (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134

    Article  CAS  PubMed  Google Scholar 

  52. Hu M, Li X, Xiong J et al (2019) Nano-Fe3C@PGC as a novel low-cost anode electrocatalyst for superior performance microbial fuel cells. Biosens Bioelectron 142:111594

    Article  CAS  PubMed  Google Scholar 

  53. Peng X, Chu X, Wang S et al (2017) Bio-power performance enhancement in microbial fuel cell using Ni–ferrite decorated anode. RSC Adv 7:16027–16032

    Article  CAS  Google Scholar 

  54. Cui Y, Chen X, Pan Z et al (2020) Biosynthesized iron sulfide nanoparticles by mixed consortia for enhanced extracellular electron transfer in a microbial fuel cell. Bioresour Technol 318:124095

    Article  CAS  PubMed  Google Scholar 

  55. Ma J, Shi N, Jia J (2020) Fe3O4 nanospheres decorated reduced graphene oxide as anode to promote extracellular electron transfer efficiency and power density in microbial fuel cells. Electrochim Acta 362:137126

    Article  CAS  Google Scholar 

  56. Liang Y, Wang H, Zhou J et al (2012) Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134:3517–3523

    Article  CAS  PubMed  Google Scholar 

  57. Khilari S, Pandit S, Varanasi JL et al (2015) Bifunctional manganese ferrite/polyaniline hybrid as electrode material for enhanced energy recovery in microbial fuel cell. ACS Appl Mater Interfaces 7:20657–20666

    Article  CAS  PubMed  Google Scholar 

  58. Tang Y, Yang C, Yang Y et al (2019) Three dimensional hierarchical network structure of S-NiFe2O4 modified few-layer titanium carbides (MXene) flakes on nickel foam as a high efficient electrocatalyst for oxygen evolution. Electrochim Acta 296:762–770

    Article  CAS  Google Scholar 

  59. Mashkour M, Rahimnejad M (2015) Effect of various carbon-based cathode electrodes on the performance of microbial fuel cell. Biofuel Res J 2:296–300

    Article  CAS  Google Scholar 

  60. Omar MH, Obaid M, Kyung-Min P et al (2018) Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chem Eng J 349:800–807

    Article  CAS  Google Scholar 

  61. Xu H, Quan X, Xiao Z et al (2018) Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem Eng J 335:539–547

    Article  CAS  Google Scholar 

  62. Mohanakrishna G, Mohan SK, Mohan SV (2012) Carbon based nanotubes and nanopowder as impregnated electrode structures for enhanced power generation: evaluation with real field wastewater. Appl Energy 95:31–37

    Article  CAS  Google Scholar 

  63. Deng L, Dong G, Zhang Y et al (2019) Lysine-modified TiO2 nanotube array for optimizing bioelectricity generation in microbial fuel cells. Electrochim Acta 300:163–170

    Article  CAS  Google Scholar 

  64. Wang Y, Chen Y, Wen Q et al (2019) Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes. Energy 2019:189

    Google Scholar 

  65. Li Y, Liu J, Chen X et al (2020) Enhanced electricity generation and extracellular electron transfer by polydopamine–reduced graphene oxide (PDA–rGO) modification for high-performance anode in microbial fuel cell. Chem Eng J 2020:387

    Google Scholar 

  66. Wang Y, He C, Li W et al (2020) High power generation in mixed-culture microbial fuel cells with corncob-derived three-dimensional N-doped bioanodes and the impact of N dopant states. Chem Eng J 2020:399

    Google Scholar 

  67. Xu H, Huang J, Lin C, Wen Q et al (2021) Bio-functional metal organic framework composite as bioanode for enhanced electricity generation by a microbial fuel cell. Electrochim Acta 2021:368

    Google Scholar 

Download references

Acknowledgements

The project was supported by National Natural Science Foundation of China (21878060). The project was supported by the Open Project of the Key Laboratory of Ultralight Materials and Surface Technology of the Ministry of Education (HEU10202103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Wen or Ye Chen.

Ethics declarations

Conflict of interest

All the authors declare that there are no conflicts of interest in publishing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wang, A., Wen, Q. et al. Modified cobalt-manganese oxide-coated carbon felt anodes: an available method to improve the performance of microbial fuel cells. Bioprocess Biosyst Eng 44, 2615–2625 (2021). https://doi.org/10.1007/s00449-021-02631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02631-6

Keywords

Navigation