Skip to main content
Log in

High specific immobilization of His-tagged recombinant Microbacterium esterase by Ni-NTA magnetic chitosan microspheres for efficient synthesis of key chiral intermediate of d-biotin

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The novel Ni-NTA-functionalized magnetic chitosan microspheres (MCS-NTA-Ni) were prepared via amino functionalization of MCS with epichlorohydrin and ethylenediamine, followed by the introduction of the aldehyde groups and NTA in turn, and nickel (II) ions were chelated in the end. MCS-NTA-Ni contained numerous long-armed NTA-Ni surface groups, ensuring high enzyme loading and providing more space and flexibility to attach enzymes and maintain their activity. This microsphere can have highly selective adsorption of his-tagged recombinant protein. The his-tagged recombinant Microbacterium esterase of E. coli BL21 (DE3)/pET21a-EstSIT01 was first immobilized on MCS-NTA-Ni by affinity fixation, giving high immobilization yield (90.1%) and enzyme loading (120 mg/g). Compared with free esterase, the immobilized esterase was found to exhibit higher pH stability and thermal stability. In addition, the immobilized esterase had excellent reusability for the synthesis of key chiral intermediate of d-biotin and the substrate conversion could still keep 100% after 8 cycles continuously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CS:

Chitosan

ECH:

Epichlorohydrin

NTA:

Nα, Nα-bis (carboxymethyl)-l-lysine

MCS:

Magnetic chitosan microspheres

MCS-ECH:

Magnetic chitosan microspheres functionalized by ECH

MCS-NH2 :

Amino-functionalized magnetic chitosan microspheres

MCS-CHO:

Aldehyde-functionalized magnetic chitosan microspheres

MCS-NTA:

NTA-functionalized magnetic chitosan microspheres

MCS-NTA-Ni:

Ni-NTA-functionalized magnetic chitosan microspheres

FTIR:

Fourier-transform infrared spectrometer

EDS:

Energy-dispersive X-ray spectroscopy

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Torresa S, Baigoría MD, Swathy SL, Pandey A, Castrocd GR (2009) Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res Int 42:454–460. https://doi.org/10.1016/j.foodres.2008.12.005

    Article  CAS  Google Scholar 

  2. Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27(6):782–798. https://doi.org/10.1016/j.biotechadv.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  3. Ju X, Yu HL, Pan J, Xu JH (2012) Improved production of Pseudomonas sp. ECU1011 acetyl esterase by medium design and fed-batch fermentation. Bioprocess Biosyst Eng 35:323–331. https://doi.org/10.1007/s00449-011-0570-7

    Article  CAS  PubMed  Google Scholar 

  4. Kikugawa M, Tsuchiyama M, Kai K, Sakamoto T (2012) Synthesis of highly water-soluble feruloyl diglycerols by esterification of an Aspergillus niger feruloyl esterase. Appl Microbiol Biotechnol 95(3):615–622. https://doi.org/10.1007/s00253-012-4056-6

    Article  CAS  PubMed  Google Scholar 

  5. Kremnicky L, Mastihuba V, Gregory LC (2004) Trichoderma reesei acetyl esterase catalyzes transesterification in water. J Mol Catal B: Enzym 30(5–6):229–239. https://doi.org/10.1016/j.molcatb.2004.05.007

    Article  CAS  Google Scholar 

  6. Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169. https://doi.org/10.1007/s00253-004-1840-y

    Article  CAS  PubMed  Google Scholar 

  7. Morlighem, Jean-Étienne RL, Radis-Baptista G (2019) The place for enzymes and biologically active peptides from marine organisms for application in industrial and pharmaceutical biotechnology. Curr Protein Pept Sci 20(4):334–355. https://doi.org/10.2174/1389203719666180926121722

    Article  CAS  PubMed  Google Scholar 

  8. Sharifi M, Sohrabi MJ, Hosseinali SH, Kani PH, Falahati M (2020) Enzyme immobilization onto the nanomaterials: application in enzyme stability and prodrug-activated cancer therapy. Int J Biol Macromol 143:665–676. https://doi.org/10.1016/j.ijbiomac.2019.12.064

    Article  CAS  PubMed  Google Scholar 

  9. Kharrat N, Ali YB, Marzouk S, Gargouri YT, Karra-Châabouni M (2011) Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: comparison with the free enzyme. Process Biochem 46:1083–1089. https://doi.org/10.1016/j.procbio.2011.01.029

    Article  CAS  Google Scholar 

  10. Velasco-Lozano S, López-Gallego F, Vázquez-Duhalt R, Mateos-Díaz JC, Guisán JM, Favela-Torres E (2014) Carrier-free immobilization of lipase from Candida rugosa with polyethyleneimines by carboxyl-activated cross-linking. Biomacromol 15(5):1896–1903. https://doi.org/10.1021/bm500333v

    Article  CAS  Google Scholar 

  11. Yadav GD, Jadhav SR (2005) Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate: Transesterification in non-aqueous medium. Microporous Mesoporous Mater 86(1–3):215–222. https://doi.org/10.1016/j.micromeso.2005.07.018

    Article  CAS  Google Scholar 

  12. Huang J, Zhao R, Wang H, Zhao W, Ding L (2010) Immobilization of glucose oxidase on Fe3O4/SiO2 magnetic nanoparticles. Biotechnol Lett 32:817–821. https://doi.org/10.1007/s10529-010-0217-9

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Pang BQW, Adams JP, Snajdrova R, Li Z (2017) Coupled immobilized amine dehydrogenase and glucose dehydrogenase for asymmetric synthesis of amines by reductive amination with cofactor recycling. ChemCatChem 9:425–431. https://doi.org/10.1002/cctc.201601446

    Article  CAS  Google Scholar 

  14. Díaz-Hernández A, Jorge G, García-Almendárez BE, Carlos R, Aldo AR (2018) Characterization of magnetic nanoparticles coated with chitosan: a potential approach for enzyme immobilization. Nanomater 9468574:1–11. https://doi.org/10.1155/2018/9468574

    Article  CAS  Google Scholar 

  15. Rahman MA, Culsum U, Kumar A, Gao H, Hu N (2016) Immobilization of a novel cold active esterase onto Fe3O4∼cellulose nano-composite enhances catalytic properties. Int J Biol Macromol 87:488–497. https://doi.org/10.1016/j.ijbiomac.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  16. Wu Y, Wang Y, Luo G, Dai Y (2009) In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour Technol 100:3459–3464. https://doi.org/10.1016/j.biortech.2009.02.018

    Article  CAS  PubMed  Google Scholar 

  17. Wood HG, Barden RE (1977) Biotin enzymes. Annu Rev Biochem 46:385–413. https://doi.org/10.1146/annurev.bi.46.070177.002125

    Article  CAS  PubMed  Google Scholar 

  18. Zheng JY, Wang SF, Zhang YJ (2013) Chemoenzymatic synthesis of d-biotin intermediate lactone via lipase-catalyzed desymmetrization of meso diols. J Mol Catal B Enzym 98:37–41. https://doi.org/10.1016/j.molcatb.2013.09.014

    Article  CAS  Google Scholar 

  19. Choi C, Tian SK, Deng L (2001) A formal catalytic asymmetric synthesis of (+)-biotin with modified cinchona alkaloids. Synthesis 11:1737–1741. https://doi.org/10.1055/s-2001-16748

    Article  Google Scholar 

  20. Chen FE, Dai HF, Kuang YY (2003) Synthetic studies on d-biotin. Part 7: † a practical asymmetric total synthesis of d-biotin via enantioselective reduction of meso-cyclic imide catalyzed by oxazborolidine. Tetrahedron Asymmetry 14:3667–3672. https://doi.org/10.1016/j.tetasy.2003.08.034

    Article  CAS  Google Scholar 

  21. Chen FE, Chen XX, Dai HF (2005) Synthetic studies on d-Biotin, Part 8:[1] An Efficient chemoenzymatic approach to the asymmetric total synthesis of d-Biotin via a polymer-supported PLE-mediated desymmetrization of mesosymmetic dicarboxylic esters. Adv Synth Catal 347:549–554. https://doi.org/10.1002/adsc.200404311

    Article  CAS  Google Scholar 

  22. Xu Y, Wu FH, Chen JB, Zhou YR, Wu XM, Yao YL, Wang DL, Zhu T (2010) Microbacterium chocolatum SIT101 and its application as biocatalyst in preparing (4S, 5R)-half ester. CN102120977A

  23. Melnyk IV, Gdula K, Dabrowski A, Zub YL (2016) Magneto-sensitive adsorbents modified by functional nitrogen-containing groups. Nanoscale Res Lett 11(1):1–6. https://doi.org/10.1186/s11671-016-1273-4

    Article  CAS  Google Scholar 

  24. Zhao H, Heindel ND (1991) Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm Res 8:400–402. https://doi.org/10.1023/A:1015866104055

    Article  CAS  PubMed  Google Scholar 

  25. Hou C, Wang Y, Zhu H, Wei H (2016) Construction of enzyme immobilization system through metal-polyphenol assisted Fe3O4/chitosan hybrid microcapsules. Chem Eng J 283:397–403. https://doi.org/10.1016/j.cej.2015.07.067

    Article  CAS  Google Scholar 

  26. Zhao X, Shi Y, Cai Y, Mou S (2008) Cetyltrimethylammonium bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples. Environ Sci Technol 42(4):1201–1206. https://doi.org/10.1021/es071817w

    Article  CAS  PubMed  Google Scholar 

  27. Zou X, Li K, Zhao Y, Zhang Yu, Li B, Song C (2013) Ferroferric oxide/l-cysteine magnetic nanospheres for capturing histidine-tagged proteins. J Mater Chem B 1(38):5108–5113. https://doi.org/10.1039/c3tb20726a

    Article  CAS  PubMed  Google Scholar 

  28. Vahidi AK, Yang Y, Ngo TPN, Li Z (2015) Simple and efficient immobilization of extracellular his-tagged enzyme directly from cell culture supernatant as active and recyclable nanobiocatalyst: high-performance production of biodiesel from waste grease. ACS Catal 5:3157–3161. https://doi.org/10.1021/acscatal.5b00550

    Article  CAS  Google Scholar 

  29. Zheng YH, Liu J, Ma YZ, Xu Y, Xu F, Hua TC (2012) Temperature effects on enzyme activity of chicken liver esterase used in calorimetric biosensor. Artif Cell Blood Sub Biotechnol 40:125–131. https://doi.org/10.3109/10731199.2011.611470

    Article  CAS  Google Scholar 

  30. Li R, Jiang L, Ye L, Lu J, Yu H (2014) Oriented covalent immobilization of esterase BioH on hydrophilic-modified Fe3O4 nanoparticles. Biotechnol Appl Biochem 61:603–610. https://doi.org/10.1002/bab.1211

    Article  CAS  PubMed  Google Scholar 

  31. Bayramoglu G, Arica MY (2014) Immobilization of Mucor miehei esterase on core-shell magnetic beads via adsorption and covalent binding: application in esters synthesis. Fiber Polym 15:2051–2060. https://doi.org/10.1007/s12221-014-2051-5

    Article  CAS  Google Scholar 

  32. Driss D, Haddar A, Ghorbel R, Chaabouni SE (2014) Production of xylooligosaccharides by immobilized his-tagged recombinant xylanase from Penicillium occitanis on nickel-chelate Eupergit C. Appl Biochem Biotechnol 5:274–279. https://doi.org/10.4161/bioe.29596

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Committee of Science and Technology (No. 13430503400), the Science Foundation of Shanghai Institute of Technology (YJ2010-04), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. ZX2012-05), Innovation Program of Shanghai Municipal Education Commission (No. 11YZ227), and the Science Foundation of Shanghai Institute of Technology (ZQ2018-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomei Wu or Yi Xu.

Ethics declarations

Conflict of interests

The authors declared that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Wu, X., Ma, B. et al. High specific immobilization of His-tagged recombinant Microbacterium esterase by Ni-NTA magnetic chitosan microspheres for efficient synthesis of key chiral intermediate of d-biotin. Bioprocess Biosyst Eng 44, 2193–2204 (2021). https://doi.org/10.1007/s00449-021-02595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02595-7

Keywords

Navigation