Skip to main content

Advertisement

Log in

Enhancing CO2 utilization by a physical absorption-based technique in microalgae culture

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Carbon dioxide supplementation is significant for cell growth in autotrophic cultures of microalgae. However, the CO2 utilization efficiency is quite low in most processes. Aimed at this problem, six kinds of physical absorption enhancers were investigated to enhance the biological carbon sequestration of microalgae. By the addition of a small amount of CO2 absorption enhancer, the total inorganic carbon concentration of the medium was significantly increased. In addition, the biomass productivity of Scenedesmus dimorphus was maximally increased by 63% by the addition of propylene carbonate in flask cultures. In cultures using an air-lift photobioreactor equipped with a pH-feedback control system to supply CO2, the CO2 consumption was maximally reduced by 71% with added polyethylene glycol dimethyl ether. This study indicates that the incorporation of physical absorption enhancers could be a promising approach to overcome the problems of low CO2 utilization efficiency and high carbon source cost in algal biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232. https://doi.org/10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  2. Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae-based biorefinery-from biofuels to natural products. Bioresource Technol 135:166–174. https://doi.org/10.1016/j.biortech.2012.10.099

    Article  CAS  Google Scholar 

  3. Morais WG, Gorgich M, Correa PS, Martins AA, Mata TM, Caetano NS (2020) Microalgae for biotechnological applications: cultivation, harvesting and biomass processing. Aquaculture 528:735562. https://doi.org/10.1016/j.aquaculture.2020.735562

    Article  CAS  Google Scholar 

  4. Yang RQ, Wei D, Xie J (2020) Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit Rev Biotechnol 40:993–1009. https://doi.org/10.1080/07388551.2020.1805402

    Article  CAS  PubMed  Google Scholar 

  5. Cuellar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102. https://doi.org/10.1016/j.jcou.2014.12.001

    Article  CAS  Google Scholar 

  6. Wang ZJ, Wen XB, Xu Y, Ding Y, Geng YH, Li YG (2018) Maximizing CO2 biofixation and lipid productivity of oleaginous microalga Graesiella sp WBG-1 via O2-regulated pH in indoor and outdoor open reactors. Sci Total Environ 619:827–833. https://doi.org/10.1016/j.scitotenv.2017.10.127

    Article  CAS  PubMed  Google Scholar 

  7. Yin DC, Wang ZJ, Wen XB, Ding Y, Hou XY, Geng YH, Li YG (2019) Effects of carbon concentration, pH, and bubbling depth on carbon dioxide absorption ratio in microalgae medium. Environ Sci Pollut R 26:902–910. https://doi.org/10.1007/s11356-019-06287-4

    Article  CAS  Google Scholar 

  8. Gonzalez-Lopez CV, Fernandez FGA, Fernandez-Sevilla JM, Fernandez JFS, Grima EM (2012) Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnol Bioeng 109:1637–1650. https://doi.org/10.1002/bit.24446

    Article  CAS  PubMed  Google Scholar 

  9. Wang XF, Lin L, Lu HF, Liu ZD, Duan N, Dong TL, Xiao H, Li BM, Xu P (2018) Microalgae cultivation and culture medium recycling by a two-stage cultivation system. Front Env Sci Eng 12:6–14. https://doi.org/10.1007/s11783-018-1078-z

    Article  CAS  Google Scholar 

  10. Pires JCM, Alvim-Ferraz MCM, Martins FG (2017) Photobioreactor design for microalgae production through computational fluid dynamics: a review. Renew Sust Energ Rev 79:248–254. https://doi.org/10.1016/j.rser.2017.05.064

    Article  CAS  Google Scholar 

  11. Vadlamani A, Pendyala B, Viamajala S, Varanasi S (2019) High productivity cultivation of microalgae without concentrated CO2 input. Acs Sustain Chem Eng 7:1933–1943. https://doi.org/10.1021/acssuschemeng.8b04094

    Article  CAS  Google Scholar 

  12. Chou HH, Su HY, Song XD, Chow TJ, Chen CY, Chang JS, Lee TM (2019) Isolation and characterization of Chlorella sp. mutants with enhanced thermo-and CO2 tolerances for CO2 sequestration and utilization of flue gases. Biotechnol Biofuels 12:550–557. https://doi.org/10.1186/s13068-019-1590-9

    Article  CAS  Google Scholar 

  13. Kim GY, Roh K, Han JI (2019) The use of bicarbonate for microalgae cultivation and its carbon footprint analysis. Green Chem 21:5053–5062. https://doi.org/10.1039/c9gc01107b

    Article  CAS  Google Scholar 

  14. Putt R, Singh M, Chinnasamy S, Das KC (2011) An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresource Technol 102:3240–3245. https://doi.org/10.1016/j.biortech.2010.11.029

    Article  CAS  Google Scholar 

  15. Bao YL, Liu M, Wu X, Cong W, Ning ZX (2012) In situ carbon supplementation in large-scale cultivations of Spirulina platensis in open raceway pond. Biotechnol Bioprocess E 17:93–99. https://doi.org/10.1007/s12257-011-0319-9

    Article  CAS  Google Scholar 

  16. Zhang DM, Wen SM, Wu X, Cong W (2018) Effect of culture condition on the growth, biochemical composition and EPA production of alkaliphilic Nitzschia plea isolated in the Southeast of China. Bioproc Biosyst Eng 41:831–839. https://doi.org/10.1007/s00449-018-1917-0

    Article  CAS  Google Scholar 

  17. Merriman L, Moix A, Beitle R, Hestekin J (2014) Carbon dioxide gas delivery to thin-film aqueous systems via hollow fiber membranes. Chem Eng J 253:165–173. https://doi.org/10.1016/j.cej.2014.04.075

    Article  CAS  Google Scholar 

  18. Wang RJ, Liu SS, Wang LD, Li QW, Zhang SH, Chen B, Jiang L, Zhang YF (2019) Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas. Appl Energ 242:302–310. https://doi.org/10.1016/j.apenergy.2019.03.138

    Article  CAS  Google Scholar 

  19. He XZ, Fu C, Hagg MB (2015) Membrane system design and process feasibility analysis for CO2 capture from flue gas with a fixed-site-carrier membrane. Chem Eng J 268:1–9. https://doi.org/10.1016/j.cej.2014.12.105

    Article  CAS  Google Scholar 

  20. Roussanaly S, Anantharaman R (2017) Cost-optimal CO2 capture ratio for membrane-based capture from different CO2 sources. Chem Eng J 327:618–628. https://doi.org/10.1016/j.cej.2017.06.082

    Article  CAS  Google Scholar 

  21. Sun ZL, Zhang DM, Yan CH, Cong W, Lu YM (2015) Promotion of microalgal biomass production and efficient use of CO2 from flue gas by monoethanolamine. J Chem Technol Biot 90:730–738. https://doi.org/10.1002/jctb.4367

    Article  CAS  Google Scholar 

  22. Fang MX, Yi NT, Di WT, Wang T, Wang QH (2020) Emission and control of flue gas pollutants in CO2 chemical absorption system-A review. Int J Greenh Gas Con 93:102904. https://doi.org/10.1016/j.ijggc.2019.102904

    Article  CAS  Google Scholar 

  23. Karlsson HK, Sanku MG, Svensson H (2020) Absorption of carbon dioxide in mixtures of N-methyl-2-pyrrolidone and 2-amino-2-methyl-1-propanol. Int J Greenh Gas Con 95:102952. https://doi.org/10.1016/j.ijggc.2019.102952

    Article  CAS  Google Scholar 

  24. Banaei M, Florusse LJ, Raeissi S, Peters CJ (2012) High-pressure vapor-liquid equilibria of methanol plus propylene: Experimental and modeling with SAFT. J Supercrit Fluid 63:25–30. https://doi.org/10.1016/j.supflu.2011.12.013

    Article  CAS  Google Scholar 

  25. Chen WH, Chen SM, Hung CI (2013) Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: a theoretical approach. Appl Energ 111:731–741. https://doi.org/10.1016/j.apenergy.2013.05.051

    Article  CAS  Google Scholar 

  26. Deng DS, Liu XB, Cui YH, Jiang YT (2018) Investigation of SO2 solubilities in some biobased solvents and their thermodynamic properties. J Chem Thermodyn 119:84–91. https://doi.org/10.1016/j.jct.2017.12.021

    Article  CAS  Google Scholar 

  27. Bi W, Zhu T, Park DW, Row KH (2012) Sorption of carbon dioxide by ionic liquid-based sorbents. Asia-Pac J Chem Eng 7:86–92. https://doi.org/10.1002/apj.495

    Article  CAS  Google Scholar 

  28. Gour RS, Bairagi M, Garlapati VK, Kant A (2018) Enhanced microalgal lipid production with media engineering of potassium nitrate as a nitrogen source. Bioengineered 9:98–107. https://doi.org/10.1080/21655979.2017.1316440

    Article  CAS  PubMed  Google Scholar 

  29. Sun ZL, Xue SZ, Yan CH, Cong W, Kong DZ (2016) Utilisation of tris(hydroxymethyl)aminomethane as a gas carrier in microalgal cultivation to enhance CO2 utilisation and biomass production. Rsc Adv 6:2703–2711. https://doi.org/10.1039/c5ra15391c

    Article  CAS  Google Scholar 

  30. Liang KH, Zhang QH, Cong W (2012) Enzyme-assisted aqueous extraction of lipid from microalgae. J Agr Food Chem 60:11771–11776. https://doi.org/10.1021/jf302836v

    Article  CAS  Google Scholar 

  31. Xue SZ, Zhang QH, Wu X, Yan CH, Cong W (2013) A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae. Bioresource Technol 138:141–147. https://doi.org/10.1016/j.biortech.2013.03.156

    Article  CAS  Google Scholar 

  32. Zhu YX, Cheng J, Xu XD, Lu HX, Wang YG, Li X, Yang WJ (2020) Using polyethylene glycol to promote Nannochloropsis oceanica growth with 15 vol% CO2. Sci Total Environ 720:137598. https://doi.org/10.1016/j.scitotenv.2020.137598

    Article  CAS  PubMed  Google Scholar 

  33. Dukes AD (2020) Measuring the Henry’s Law constant for carbon dioxide and water with UV-visible absorption spectroscopy. Anal Sci 36:971–975. https://doi.org/10.2116/analsci.19p477

    Article  CAS  Google Scholar 

  34. Sawdon A, Peng CA (2015) Internal deoxygenation of tubular photobioreactor for mass production of microalgae by perfluorocarbon emulsions. J Chem Technol Biot 90:1426–1432. https://doi.org/10.1002/jctb.4444

    Article  CAS  Google Scholar 

  35. Deng Y, Beadham I, Ren HY, Ji MM, Ruan WQ (2020) A study into the species sensitivity of green algae towards imidazolium-based ionic liquids using flow cytometry. Ecotox Environ Safe 194:110392. https://doi.org/10.1016/j.ecoenv.2020.110392

    Article  CAS  Google Scholar 

  36. Kumar A, Ergas S, Yuan X, Sahu A, Zhang QO, Dewulf J, Malcata FX, Langenhove HV (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380. https://doi.org/10.1016/j.tibtech.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  37. Moraes L, Rosa GM, Espana AM, Santos LO, Morais MG, Grima EM, Costa JAV, Fernandez FGA (2019) Engineering strategies for the enhancement of Nannochloropsis gaditana outdoor production: Influence of the CO2 flow rate on the culture performance in tubular photobioreactors. Process Biochem 76:171–177. https://doi.org/10.1016/j.procbio.2018.10.010

    Article  CAS  Google Scholar 

  38. Tatli O, Nikerel E, Sogutmaz Ozdemir B (2015) Evaluation of metabolite extraction protocols and determination of physiological response to drought stress via reporter metabolites in model plant Brachypodium distachyon. Turk J Bot 39:1042–1050. https://doi.org/10.3906/bot-1505-28

    Article  CAS  Google Scholar 

  39. Nonomura AM, Benson AA (1992) The path of carbon in photosynthesis: improved crop yields with methanol. Proc Natl Acad Sci U S A 89:9794–9798. https://doi.org/10.1016/j.aquaculture.2020.735562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi W, Kim G, Lee K (2012) Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp. Bioresource Technol 120:295–299. https://doi.org/10.1016/j.biortech.2012.06.010

    Article  CAS  Google Scholar 

  41. Wang RM, Tian Y, Xue SZ, Zhang DM, Zhang QH, Wu X, Kong DZ, Cong W (2016) Enhanced microalgal biomass and lipid production via co-culture of Scenedesmus obliquus and Candida tropicalis in an autotrophic system. J Chem Technol Biot 91:1387–1396. https://doi.org/10.1002/jctb.4735

    Article  CAS  Google Scholar 

  42. Kim S, Moon M, Kwak M, Lee B, Chang YK (2018) Statistical optimization of light intensity and CO2 concentration for lipid production derived from attached cultivation of green microalga Ettlia sp. Sci Rep-UK 8:33793. https://doi.org/10.1038/s41598-018-33793-1

    Article  CAS  Google Scholar 

  43. Song Y, Cheng J, Guo W, Liu S, Ali KA (2020) Microporous diaphragm aerator improves flue gas CO2 dissolution and photosynthetic characteristics of Arthrospira cells in 660 m2 raceway ponds. Acs Sustain Chem Eng 1021:02714. https://doi.org/10.1021/acssuschemeng.0c02714

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31802323) and High-level Talent Support Program of Yangzhou University.

Author information

Authors and Affiliations

Authors

Contributions

ZS: Investigation, Methodology, Writing—original draft. MX: Methodology, Validation, Writing—review. PL: Resources, Writing—review. LS: Writing—review. SW: Conceptualization, Supervision, Writing—review and editing.

Corresponding author

Correspondence to Shi-Kai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, ZL., Xin, MR., Li, P. et al. Enhancing CO2 utilization by a physical absorption-based technique in microalgae culture. Bioprocess Biosyst Eng 44, 1901–1912 (2021). https://doi.org/10.1007/s00449-021-02570-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02570-2

Keywords

Navigation