Skip to main content

Advertisement

Log in

Bioengineered gold nanoparticles using Cynodon dactylon extract and its cytotoxicity and antibacterial activities

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, simple and green route approach was applied for the synthesis gold nanoparticles (AuNPs) containing an aqueous extract of Cynodon dactylon L. Pers., (C. dactylon). The synthesized AuNPs were characterized using spectral and microscopic analysis. The changes in the color pattern were observed upon synthesis by UV–vis spectrophotometer with a peak of 530 nm. The FT-IR, XRD, SEM, and TEM were used to analyze the crystal nature and morphology of the green synthesized AuNPs. The C. dactylon-loaded AuNPs in different concentrations (0.625–100 μg/ml) were used to assess cytotoxicity activity against MCF-7 cell line and where the IC50 was found to be 31.34 μg/ml by MTT assay. The C. dactylon-AuNPs were significantly increased reactive oxygen species (ROS) generation, DNA fragmentation, and mitochondrial membrane changes observed by dichlorodihydroflurescenin diacetate (DCFH-DA), 4′,6-diamidino-2-phenylindole (DAPI), Rhodamine-123, and acridine orange (AO)/ethidium bromide (EtBr) staining assay. Besides the microbial study revealed that C. dactylon-AuNPs exhibited significant antibacterial activity against clinically isolated pathogenic bacteria such as Enterobacter cloacae, Staphylococus Haemolytics, Staphylococcus petrasii subsp. Pragensis and Bacillus cereus with a zone of inhibition 13, 12, 13 and 12 mm, respectively. It could be concluded that C. dactylon has the ability to be involved in the biosynthesis of AuNPs, and the pharmacological studies proved the promising cytotoxic effect on MCF-7 cell line and pathogenic bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schwartz-Duval AS, Konopka CJ, Moitra P, Daza EA, Srivastava I, Johnson EV, Kampert TL, Fayn S, Haran A, Dobrucki LW (2020) Intratumoral generation of photothermal gold nanoparticles through a vectorized biomineralization of ionic gold. Nat Commun 11(1):4530. https://doi.org/10.1038/s41467-020-17595-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Salem SS, Fouda A (2020) Green synthesis of metallic nanoparticles and their prosective biotechnological applications: an overview. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02138-3

    Article  PubMed  Google Scholar 

  3. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elahi N, Kamali M, Baghersad MH (2018) Recent biomedical applications of gold nanoparticles: a review. Talanta 184:537–556. https://doi.org/10.1016/j.talanta.2018.02.088

    Article  CAS  PubMed  Google Scholar 

  5. Patil MP, Kim GD (2020) Gold nanoparticles: Biogenic synthesis and anticancer application. In: Saquib Q, Faisal M, Al-Khedhairy AA, Alatar AA (eds) Green synthesis of nanoparticles: applications and prospects. Springer, Singapore . https://doi.org/10.1007/978-981-15-5179-6_9

    Chapter  Google Scholar 

  6. Goddard ZR, Marín MJ, Russell DA, Searcey M (2020) Active targeting of gold nanoparticles as cancer therapeutics. Chem Soc Rev 49:8774–8789. https://doi.org/10.1039/D0CS01121E

    Article  CAS  PubMed  Google Scholar 

  7. D’Mello SR, Cruz CN, Chen M-L, Kapoor M, Lee SL, Tyner KM (2017) The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechnol 12:523–529. https://doi.org/10.1038/nnano.2017.67

    Article  CAS  PubMed  Google Scholar 

  8. Miele E, Spinelli GP, Mile E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomed 4:99–105. https://doi.org/10.2147/ijn.s3061

    Article  CAS  Google Scholar 

  9. Siegel Rebecca L, Kimberly SM, Ahmedin J (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590

    Article  CAS  PubMed  Google Scholar 

  10. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953. https://doi.org/10.1002/ijc.31937

    Article  CAS  PubMed  Google Scholar 

  11. Jung KW, Won YJ, Kong HJ, Lee ES (2019) Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2016. Cancer Res Treat Off J Korean Cancer Assoc 51(2):417–430. https://doi.org/10.4143/crt.2019.138

    Article  Google Scholar 

  12. Zhao CY, Cheng R, Yang Z, Tian ZM (2018) Nanotechnology for cancer therapy based on chemotherapy. Molecules 23(4):826. https://doi.org/10.3390/molecules23040826

    Article  CAS  PubMed Central  Google Scholar 

  13. Huang CY, Ju DT, Chang CF, Reddy PM, Velmurugan BK (2017) A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei) 7(4):23. https://doi.org/10.1051/bmdcn/2017070423

    Article  Google Scholar 

  14. Elia P, Zach R, Hazan S, Kolusheva S, Ze P, Zeiri Y (2014) Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomed 9:4007–4021. https://doi.org/10.2147/IJN.S57343

    Article  CAS  Google Scholar 

  15. Dumur F, Guerlin A, Dumas E, Bertin D, Gigmes D, Mayer CR (2011) Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull 44:119–137. https://doi.org/10.1007/s13404-011-0018-5

    Article  Google Scholar 

  16. El-Borady OM, Ayat MS, Shabrawy MA, Millet P (2020) Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents. Adv Powder Tech 31(10):4390–4400. https://doi.org/10.1016/j.apt.2020.09.017

    Article  CAS  Google Scholar 

  17. Wang L, Xu J, Yan Y, Liu H, Karunakaran T, Li F (2019) Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1). Artif Cells Nanomed Biotechnol 47(1):1617–1627. https://doi.org/10.1080/21691401.2019.1594862

    Article  CAS  PubMed  Google Scholar 

  18. Sun B, Nanjun Hu, Han L, Yanan Pi Yu, Gao KC (2019) Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif Cells Nanomed Biotechnol 47:4012–4019. https://doi.org/10.1080/21691401.2019.1575844

    Article  PubMed  Google Scholar 

  19. Nischitha R, Vasanthkumari MM, Kumaraswamy BE, Shivanna MB (2020) Antimicrobial and antioxidant activities and chemical profiling of Curvularia tsudae endophytic in Cynodon dactylon (L.) Pers. 3 Biotech 10(7):1–12. https://doi.org/10.1007/s13205-020-02250-0

    Article  Google Scholar 

  20. Albert-Baskar A, Ignacimuthu S (2010) Chemopreventive effect of Cynodon dactylon (L.) Pers. extract against DMH-induced colon carcinogenesis in experimental animals. Exp Toxicol Pathol 62:423–431. https://doi.org/10.1016/j.etp.2009.06.003

    Article  PubMed  Google Scholar 

  21. Jarald EE, Joshi SB, Jain DC (2008) Antidiabetic activity of aqueous extract and non polysaccharide fraction of Cynodon dactylon Pers. Indian J Exp Biol 46(9):660–667

    CAS  PubMed  Google Scholar 

  22. Singh SK, Kesari AN, Gupta RK, Jaiswal D, Watal G (2007) Assessment of antidiabetic potential of Cynodon dactylon extract in streptozotocin diabetic rats. J Ethnopharmacol 114(2):174–179. https://doi.org/10.1016/j.jep.2007.07.039

    Article  PubMed  Google Scholar 

  23. Abdullah S, Gobilik J, Chong K (2013) In vitro antimicrobial activity of Cynodon dactylon (L.) Pers. (bermuda) against selected pathogens. Dev Sustain Chem Bioprocess Technol. https://doi.org/10.1007/978-1-4614-6208-8_29

    Article  Google Scholar 

  24. Savadi S, Vazifedoost M, Didar Z, Nematshahi MM, Jahed E (2020) Phytochemical analysis and antimicrobial/antioxidant activity of Cynodon dactylon (L.) Pers. rhizome methanolic extract. J Food Qual. https://doi.org/10.1155/2020/5946541

    Article  Google Scholar 

  25. Golshan A, Hayatdavoudi P, Mousa A, Rad AK, Roshan NM, Abbasnezhad A, Mousavi SM, Pakdel R, Zarei B, Aghaee A (2017) Kidney stone formation and antioxidant effects of Cynodon dactylon decoction in male Wistar rats. Avicenna J Phytomed 7(2):80–190

    Google Scholar 

  26. Singh SK, Rai PK, Mehta S, Singh RK, Watal G (2009) Curative effect of Cynodon dactylon against STZ induced hepatic injury in diabetic rats. Indian J Clin Biochem 24:410–413. https://doi.org/10.1007/s12291-009-0073-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Karthik D, Ravikumar SJB, Sciences E (2011) A study on the protective effect of Cynodon dactylon leaves extract in diabetic rats. Biomed Environ Sci 24:190–199. https://doi.org/10.3967/0895-3988.2011.02.014

    Article  CAS  PubMed  Google Scholar 

  28. Kowsalya R, Kaliaperumal J, Vaishnavi M, Namasivayam E (2015) Anticancer activity of Cynodon dactylon L. root extract against diethyl nitrosamine induced hepatic carcinoma. South Asian J Cancer 4(2):83–87. https://doi.org/10.4103/2278-330X.155691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pal D (2008) Evaluation of CNS activities of aerial parts of Cynodon dactylon Pers. in mice. Acta Pol Pharm 65:37–43

    PubMed  Google Scholar 

  30. Pennacchio M, Jefferson L, Havens K (2010) Uses and abuses of plant-derived smoke: its ethnobotany as hallucinogen, perfume, incense, and medicine. Oxford University Press, Oxford

    Google Scholar 

  31. Vijayakumar S, Vinayagam R, Anand MAV, Venkatachalam K, Saravanakumar K, Wang M-H, Gothandam K, David E (2020) Green synthesis of gold nanoparticle using Eclipta alba and its antidiabetic activities through regulation of Bcl-2 expression in pancreatic cell line. J Drug Deliv Sci Tech. https://doi.org/10.1016/j.jddst.2020.101786

    Article  Google Scholar 

  32. Sharma D, Kanchi S, Bisetty K (2019) Biogenic synthesis of nanoparticles: a review. Arabian J Chem 12(8):3576–3600

    Article  CAS  Google Scholar 

  33. Lydia DE, Khusro A, Immanuel P, Esmail GA, Al-Dhabi NA, Arasu MV (2020) Photo-activated synthesis and characterization of gold nanoparticles from Punica granatum L. seed oil: an assessment on antioxidant and anticancer properties for functional yoghurt nutraceuticals. J Photochem Photobiol B Biol. https://doi.org/10.1016/j.jphotobiol.2020.111868

    Article  Google Scholar 

  34. Arunachalam KD, Arun LB, Annamalai SK, Arunachalam AM (2014) Biofunctionalized gold nanoparticles synthesis from Gymnema sylvestre and its preliminary anticancer activity. Int J Pharm Pharm Sci 6:423–430

    Google Scholar 

  35. Isaac R, Sakthivel G, Murthy C (2013) Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. J Nanotechnol 906592:6. https://doi.org/10.1155/2013/906592

    Article  CAS  Google Scholar 

  36. Sundeep D, Kumar TV, Rao PS, Ravikumar R, Krishna AG (2017) Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications. Prog Biomater 6:57–66. https://doi.org/10.1007/s40204-017-0067-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patil MP, Ngabire D, Thi HHP, Kim M-D, Kim GD (2017) Eco-friendly synthesis of gold nanoparticles and evaluation of their cytotoxic activity on cancer cells. J Clust Sci 28:119–132. https://doi.org/10.1007/s10876-016-1051-6

    Article  CAS  Google Scholar 

  38. Patil MP, Bayaraa E, Subedi P, Piad LLA, Tarte NH, Kim GD (2019) Biogenic synthesis, characterization of gold nanoparticles using Lonicera japonica and their anticancer activity on HeLa cells. J Drug Deliv Sci Technol 51:83–90. https://doi.org/10.1016/j.jddst.2019.02.021

    Article  CAS  Google Scholar 

  39. Sunderam V, Thiyagarajan D, Lawrence AV, Mohammed SSS, Selvaraj A (2019) In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi J Biol Sci 26:455–459. https://doi.org/10.1016/j.sjbs.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  40. Sahu N, Soni D, Chandrashekhar B, Sarangi BK, Satpute D, Pandey RA (2013) Synthesis and characterization of silver nanoparticles using Cynodon dactylon leaves and assessment of their antibacterial activity. Bioprocess Biosyst Eng 36:999–1004. https://doi.org/10.1007/s00449-012-0841-y

    Article  CAS  PubMed  Google Scholar 

  41. Meenatchi T, Palanimurugan A, Dhanalakshmi A, Maheshkumar V, Natarajan B (2020) Green synthesis of Cynodon Dactylon capped concentrations on ZnO nanoparticles for antibacterial activity, ROS/ML-DNA treatment and compilation of best controlling microbes by mathematical comparisons. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2020.137429

    Article  Google Scholar 

  42. Xia Q, Huang J, Feng Q, Chen X, Liu X, Li X, Zhang T, Xiao S, Li H, Zhong Z (2019) Size-and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int J Nanomed 14:6957–6970. https://doi.org/10.2147/IJN.S21400

    Article  CAS  Google Scholar 

  43. Botha TL, Elemike EE, Horn S, Onwudiwe DC, Giesy JP, Wepener V (2019) Cytotoxicity of Ag, Au and Ag-Au bimetallic nanoparticles prepared using golden rod (Solidago canadensis) plant extract. Sci Rep 9(1):4169. https://doi.org/10.1038/s41598-019-40816-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rodríguez-León E, Rodríguez-Vázquez BE, Martínez-Higuera A, Rodríguez-Beas C, Larios-Rodríguez E, Navarro RE, López-Esparza R, Iñiguez-Palomares RA (2019) Synthesis of gold nanoparticles using Mimosa tenuiflora extract, assessments of cytotoxicity, cellular uptake, and catalysis. Nanoscale Res Lett 14:334. https://doi.org/10.1186/s11671-019-3158-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sabharwal SS, Schumacker PT (2014) Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 14(11):709–721. https://doi.org/10.1038/nrc3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (Δψ m) in apoptosis; an update. Apoptosis 8(2):115–128. https://doi.org/10.1023/a:1022945107762

    Article  CAS  PubMed  Google Scholar 

  47. Chen Q, Chai Y, Mazumder S, Jiang C, Macklis R, Chisolm G, Almasan A (2003) The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ 10(3):323–334. https://doi.org/10.1038/sj.cdd.4401148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han X, Jiang X, Guo L, Wang Y, Veeraraghavan VP, Krishna Mohan S, Wang Z, Cao D (2019) Anticarcinogenic potential of gold nanoparticles synthesized from Trichosanthes kirilowii in colon cancer cells through the induction of apoptotic pathway. Artif Cells Nanomed Biotechnol 47(1):3577–3584. https://doi.org/10.1080/21691401.2019.1626412

    Article  CAS  PubMed  Google Scholar 

  49. Gupta S, Kass GE, Szegezdi E, Joseph B (2009) The mitochondrial death pathway: a promising therapeutic target in diseases. J Cell Mol Med 13(6):1004–1033. https://doi.org/10.1111/j.1582-4934.2009.00697.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu T, Duan X, Hu C, Wu C, Chen X, Huang J, Liu J, Cui S (2019) Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif Cells Nanomed Biotechnol 47(1):512–523. https://doi.org/10.1080/21691401.2018.1560305

    Article  CAS  PubMed  Google Scholar 

  51. Kowsalya E, MosaChristas K, Jaquline CRI, Balashanmugam P, Devasena T (2020) Gold nanoparticles induced apoptosis via oxidative stress and mitochondrial dysfunctions in MCF-7 breast cancer cells. Appl Organomet Chem. https://doi.org/10.1002/aoc.6071

    Article  Google Scholar 

  52. Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256(1):12–18. https://doi.org/10.1006/excr.2000.4834

    Article  CAS  PubMed  Google Scholar 

  53. Heimann RB, Lehmann HD (2015) Bioceramic coatings for medical implants: trends and techniques. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  54. Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran M, Kalaichelvan P (2014) Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotech Rep 4:42–49. https://doi.org/10.1016/j.btre.2014.08.002

    Article  CAS  Google Scholar 

  55. Yun Z, Chinnathambi A, Alharbi SA, Jin ZJ (2020) Biosynthesis of gold nanoparticles using Vetex negundo and evaluation of pro-apoptotic effect on human gastric cancer cell lines. J Photochem Photobiol B. https://doi.org/10.1016/j.jphotobiol.2019.111749

    Article  PubMed  Google Scholar 

  56. Cordani M, Somoza ÁJC, Sciences ML (2019) Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment. Cell Mol Life Sci 76(7):1215–1242. https://doi.org/10.1007/s00018-018-2973-y

    Article  CAS  PubMed  Google Scholar 

  57. Uzma M, Sunayana N, Raghavendra VB, Madhu CS, Shanmuganathan R, Brindhadevi K (2020) Biogenic synthesis of gold nanoparticles using Commiphora wightii and their cytotoxic effects on breast cancer cell line (MCF-7). Process Biochem 92:269–276. https://doi.org/10.1016/j.procbio.2020.01.019

    Article  CAS  Google Scholar 

  58. Munawer U, Raghavendra VB, Ningaraju S, Krishna KL, Ghosh AR, Melappa G, Pugazhendhi A (2020) Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: Photodegradation, in vitro anticancer activity and in vivo antitumor studies. Int J Pharm 588:119729

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Core Research Support Center for Natural Products and Medical Materials (CRCNM) at Yeungnam University, Gyeongsan, Republic of Korea, for technical support regarding to physiochemical analysis. Following are the results of a study on the “LINC+ (Leaders in INdustry-university Cooperation +)” Project, supported by the Ministry of Education (2020-D-G043-010119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Gu Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of these articles. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinayagam, R., Santhoshkumar, M., Lee, K.E. et al. Bioengineered gold nanoparticles using Cynodon dactylon extract and its cytotoxicity and antibacterial activities. Bioprocess Biosyst Eng 44, 1253–1262 (2021). https://doi.org/10.1007/s00449-021-02527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02527-5

Keyword

Navigation