Skip to main content
Log in

Comparison of microbial community structures between mesophilic and thermophilic anaerobic digestion of vegetable waste

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The anaerobic digestion performance correlates with the functional microbial community. Mesophilic and thermophilic digestions of vegetable waste were conducted, and dynamics of the microbial community were investigated. The mesophilic and thermophilic collapsed stages occurred at organic loading rates of 1.5 and 2.0 g VS/(L d) due to the accumulation of volatile fatty acids with final concentrations of 2276 and 6476 mg/L, respectively. A high concentration of volatile fatty acids caused the severe inhibition of methanogens, which finally led to the imbalance between acetogenesis and methanogenesis. The mesophilic digestion exhibited a higher microbial diversity and richness than the thermophilic digestion. Syntrophic acetate-oxidizing coupled with hydrogenotrophic methanogenesis was the dominant pathway in the thermophilic stable system, and acetoclastic methanogenesis in the mesophilic stable system. The dominant acidogens, syntrophus, and methanogens were unclassified_f__Anaerolineaceae (8.68%), Candidatus_Cloacamonas (19.70%), Methanosaeta (6.10%), and Methanosarcina (4.08%) in the mesophilic stable stage, and Anaerobaculum (12.59%), Syntrophaceticus (4.84%), Methanosarcina (30.58%), and Methanothermobacter (3.17%) in thermophilic stable stage. Spirochaetae and Thermotogae phyla were the characteristic microorganisms in the mesophilic and thermophilic collapsed stages, respectively. These findings provided valuable information for the deep understanding of the difference of the microbial community and methane-producing mechanism between mesophilic and thermophilic digestion of vegetable waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li D, Ran Y, Chen L, Cao Q, Li Z, Liu X (2018) Instability diagnosis and syntrophic acetate oxidation during thermophilic digestion of vegetable waste. Water Res 139:263–271

    Article  CAS  PubMed  Google Scholar 

  2. Arhoun B, Villen-Guzman M, Gomez-Lahoz C, Rodriguez-Maroto JM, Garcia-Herruzo F, Vereda-Alonso C (2019) Anaerobic co-digestion of mixed sewage sludge and fruits and vegetable wholesale market waste: composition and seasonality effect. J Water Proc Eng 31:100848

    Article  Google Scholar 

  3. Perazzolo F, Mattachini G, Tambone F, Misselbrook T, Provolo G (2015) Effect of mechanical separation on emissions during storage of two anaerobically codigested animal slurries. Agric Ecosyst Environ 207:1–9

    Article  CAS  Google Scholar 

  4. Li D, Chen L, Liu X, Mei Z, Ren H, Cao Q, Yan Z (2017) Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste. Bioresour Technol 245:90–97

    Article  CAS  PubMed  Google Scholar 

  5. Vats N, Khan AA, Ahmad K (2019) Effect of substrate ratio on biogas yield for anaerobic co-digestion of fruit vegetable waste and sugarcane bagasse. Environ Technol Innov 13:331–339

    Article  Google Scholar 

  6. Shi X, Guo X, Zuo J, Wang Y, Zhang M (2018) A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: process stability and microbial community structure shifts. Waste Manag 75:261–269

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Loh KC, Sarvanantharajah S, Tong YW, Wang CH, Dai Y (2019) Mesophilic and thermophilic anaerobic digestion of soybean curd residue for methane production: characterizing bacterial and methanogen communities and their correlations with organic loading rate and operating temperature. Bioresour Technol 288:121597

    Article  CAS  PubMed  Google Scholar 

  8. Ryue J, Lin L, Liu Y, Lu W, McCartney D, Dhar BR (2019) Comparative effects of GAC addition on methane productivity and microbial community in mesophilic and thermophilic anaerobic digestion of food waste. Biochem Eng J 146:79–87

    Article  CAS  Google Scholar 

  9. Wang X, Li Z, Bai X, Zhou X, Cheng S, Gao R, Sun J (2018) Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: methane production and microbial community in CSTR process. Bioresour Technol 249:290–297

    Article  CAS  PubMed  Google Scholar 

  10. Ros M, de Souza Oliveira Filho J, Perez Murcia MD, Bustamante MA, Moral R, Coll MD, Lopez Santisima-Trinidad AB, Pascual JA (2017) Mesophilic anaerobic digestion of pig slurry and fruit and vegetable waste: dissection of the microbial community structure. J Clean Prod 156:757–765

    Article  CAS  Google Scholar 

  11. APHA (1998) Standard methods for the examination of water and wastewater, 21st edn. APHA, New York

    Google Scholar 

  12. Cao Q, Liu X, Ran Y, Li Z, Li D (2019) Methane oxidation coupled to denitrification under microaerobic and hypoxic conditions in leach bed bioreactors. Sci Total Environ 649:1–11

    Article  CAS  PubMed  Google Scholar 

  13. Zhu X, Chen L, Chen Y, Cao Q, Liu X, Li D (2019) Differences of methanogenesis between mesophilic and thermophilic in situ biogas-upgrading systems by hydrogen addition. J Ind Microbiol Biotechnol 46:1569–1581

    Article  CAS  PubMed  Google Scholar 

  14. Salomoni C, Caputo A, Bonoli M, Francioso O, Rodriguez-Estrada MT, Palenzona D (2011) Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes. Bioresour Technol 102:6443–6448

    Article  CAS  PubMed  Google Scholar 

  15. Mei Z, Liu X, Huang X, Li D, Yan Z, Yuan Y, Huang Y (2016) Anaerobic mesophilic codigestion of rice straw and chicken manure: effects of organic loading rate on process stability and performance. Appl Biochem Biotechnol 179:846–862

    Article  CAS  PubMed  Google Scholar 

  16. Siegert I, Banks C (2005) The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem 40:3412–3418

    Article  CAS  Google Scholar 

  17. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940

    Article  CAS  PubMed  Google Scholar 

  18. Lee J, Hwang S (2019) Single and combined inhibition of Methanosaeta concilii by ammonia, sodium ion and hydrogen sulfide. Bioresour Technol 281:401–411

    Article  CAS  PubMed  Google Scholar 

  19. Jiang Y, Heaven S, Banks CJ (2012) Strategies for stable anaerobic digestion of vegetable waste. Renew Energy 44:206–214

    Article  CAS  Google Scholar 

  20. Chen H, Li A, Wang Q, Cui D, Cui C, Ma F (2018) Nitrogen removal performance and microbial community of an enhanced multistage A/O biofilm reactor treating low-strength domestic wastewater. Biodegradation 29:285–299

    Article  CAS  PubMed  Google Scholar 

  21. Greses S, Gaby JC, Aguado D, Ferrer J, Seco A, Horn SJ (2017) Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Res 27:121–130

    Article  Google Scholar 

  22. Vanwonterghem I, Jensen PD, Rabaey K, Tyson GW (2015) Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters. Sci Rep 5:8496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang M, Zhou J, Yuan Y-X, Dai Y-M, Li D, Li Z-D, Liu X-F, Zhang X-Y, Yan Z-Y (2017) Methane production characteristics and microbial community dynamics of mono-digestion and co-digestion using corn stalk and pig manure. Int J Hydrog Energy 42:4893–4901

    Article  CAS  Google Scholar 

  24. Militon C, Hamdi O, Michotey V, Fardeau M-L, Ollivier B, Bouallagui H, Hamdi M, Bonin P (2015) Ecological significance of synergistetes in the biological treatment of tuna cooking wastewater by an anaerobic sequencing batch reactor. Environ Sci Pollut Res 22:18230–18238

    Article  CAS  Google Scholar 

  25. Nobu MK, Narihiro T, Rinke C, Kamagata Y, Tringe SG, Woyke T, Liu W-T (2015) Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J 9:1710–1722

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zamorano-López N, Greses S, Aguado D, Seco A, Borrás L (2019) Thermophilic anaerobic conversion of raw microalgae: microbial community diversity in high solids retention systems. Algal Res 41:101533

    Article  Google Scholar 

  27. Gulhane M, Pandit P, Khardenavis A, Singh D, Purohit H (2017) Study of microbial community plasticity for anaerobic digestion of vegetable waste in anaerobic baffled reactor. Renew Energy 101:59–66

    Article  CAS  Google Scholar 

  28. Li L, He Q, Ma Y, Wang X, Peng X (2015) Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: relationship between community structure and process stability. Bioresour Technol 189:113–120

    Article  CAS  PubMed  Google Scholar 

  29. Wang M, Zhang X, Zhou J, Yuan Y, Dai Y, Li D, Li Z, Liu X, Yan Z (2017) The dynamic changes and interactional networks of prokaryotic community between co-digestion and mono-digestions of corn stalk and pig manure. Bioresour Technol 225:23–33

    Article  CAS  PubMed  Google Scholar 

  30. Lu Q, Yu Z, Yu S, Liang Z, Li H, Sun L, Wang S (2019) Organic matter rather than salinity as a predominant feature changes performance and microbiome in methanogenic sludge digesters. J Hazard Mater 377:349–356

    Article  CAS  PubMed  Google Scholar 

  31. Ikeda M, Kobayashi T, Suzuki T, Wakabayashi Y, Ohama Y, Maekawa S, Takahashi S, Homma Y, Tatsuno K, Sato T, Okugawa S, Moriya K, Yotsuyanagi H (2017) Propionimicrobium lymphophilum and Actinotignum schaalii bacteraemia: a case report. New Microbes New Infect 18:18–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hahnke S, Langer T, Koeck DE, Klocke M (2016) Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum. Int J Syst Evol Microbiol 66:1466–1475

    Article  CAS  PubMed  Google Scholar 

  33. Nakasaki K, Nguyen KK, Ballesteros FC Jr, Maekawa T, Koyama M (2019) Characterizing the microbial community involved in anaerobic digestion of lipid-rich wastewater to produce methane gas. Anaerobe 61:102082

    Article  PubMed  Google Scholar 

  34. MerlinChristy P, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sustain Energy Rev 34:167–173

    Article  CAS  Google Scholar 

  35. He Q, Li L, Zhao X, Qu L, Wu D, Peng X (2017) Investigation of foaming causes in three mesophilic food waste digesters: reactor performance and microbial analysis. Sci Rep 7:13701

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang H, Deng L, Wang L, Zheng D, Liu Y, Wang S, Huang F (2019) Comparison of three biomass-retaining reactors of the ASBR, the UBF and the USR treating swine wastewater for biogas production. Renew Energy 138:521–530

    Article  CAS  Google Scholar 

  37. Goncalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho E, Coelho L (2019) The genus Aeromonas: a general approach. Microb Pathog 130:81–94

    Article  CAS  PubMed  Google Scholar 

  38. Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Pühler A, Schlüter A (2015) Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels 8:14

    Article  PubMed  PubMed Central  Google Scholar 

  39. Caruso M, Braghieri A, Capece A, Napolitano F, Romano P, Galgano F, Altieri G, Genovese F (2019) Recent updates on the use of agro-food waste for biogas production. Appl Sci 9:1217

    Article  CAS  Google Scholar 

  40. FitzGerald JA, Wall DM, Jackson SA, Murphy JD, Dobson ADW (2019) Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage. Renew Energy 138:980–986

    Article  CAS  Google Scholar 

  41. Singh N, Mathur AS, Barrow CJ, Tuli DK, Gupta RP, Puri M (2019) Influence of substrate loadings on the consolidated bioprocessing of rice straw and sugarcane bagasse biomass using Ruminiclostridium thermocellum. Bioresour Technol Rep 7:100138

    Article  Google Scholar 

  42. Westerholm M, Roos S, Schnurer A (2010) Syntrophaceticus schinkii gen. nov., sp nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett 309:100–104

    CAS  PubMed  Google Scholar 

  43. Lee J, Koo T, Yulisa A, Hwang S (2019) Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition. J Environ Manag 241:418–426

    Article  CAS  Google Scholar 

  44. Liu PF, Qiu QF, Lu YH (2011) Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil. Appl Environ Microb 77:3884–3887

    Article  CAS  Google Scholar 

  45. Chen Y, Zhao Z, Zou H, Yang H, Sun T, Li M, Chai H, Li L, Ai H, Shi D, He Q, Gu L (2019) Digestive performance of sludge with different crop straws in mesophilic anaerobic digestion. Bioresour Technol 289:121595

    Article  CAS  PubMed  Google Scholar 

  46. Feng S, Hou S, Huang X, Fang Z, Tong Y, Yang H (2019) Insights into the microbial community structure of anaerobic digestion of municipal solid waste landfill leachate for methane production by adaptive thermophilic granular sludge. Electron J Biotechnol 39:98–106

    Article  CAS  Google Scholar 

  47. Stolze Y, Bremges A, Rumming M, Henke C, Maus I, Pühler A, Sczyrba A, Schlüter A (2016) Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants. Biotechnol Biofuels 9:156

    Article  PubMed  PubMed Central  Google Scholar 

  48. Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS, Langer T, Kreubel J, Erhard M, Bremges A, Off S, Stolze Y, Jaenicke S, Goesmann A, Sczyrba A, Scherer P, Konig H, Schwarz WH, Zverlov VV, Liebl W, Puhler A, Schluter A, Klocke M (2016) Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol Biofuels 9:171

    Article  PubMed  PubMed Central  Google Scholar 

  49. Werner JJ, Garcia ML, Perkins SD, Yarasheski KE, Smith SR, Muegge BD, Stadermann FJ, DeRito CM, Floss C, Madsen EL (2014) Microbial community dynamics and stability during an ammonia-induced shift to syntrophic acetate oxidation. Appl Environ Microbiol 80:3375–3383

  50. Pap B, Gyorkei A, Boboescu IZ, Nagy IK, Biro T, Kondorosi E, Maroti G (2015) Temperature-dependent transformation of biogas-producing microbial communities points to the increased importance of hydrogenotrophic methanogenesis under thermophilic operation. Bioresour Technol 177:375–380

    Article  CAS  PubMed  Google Scholar 

  51. Harb M, Xiong Y, Guest J, Amy G, Hong P-Y (2015) Differences in microbial communities and performance between suspended and attached growth anaerobic membrane bioreactors treating synthetic municipal wastewater. Environ Sci Water Res Technol 1:800–813

    Article  Google Scholar 

  52. Xiao Y, Yang H, Yang H, Wang H, Zheng D, Liu Y, Pu X, Deng L (2019) Improved biogas production of dry anaerobic digestion of swine manure. Bioresour Technol 294:122188

    Article  CAS  PubMed  Google Scholar 

  53. Lee J, Shin SG, Han G, Koo T, Hwang S (2017) Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: key process parameters and microbial indicators of process instability. Bioresour Technol 245:689–697

    Article  CAS  PubMed  Google Scholar 

  54. Zheng D, Wang HZ, Gou M, Nobu MK, Narihiro T, Hu B, Nie Y, Tang YQ (2019) Identification of novel potential acetate-oxidizing bacteria in thermophilic methanogenic chemostats by DNA stable isotope probing. Appl Microbiol Biotechnol 103:8631–8645

    Article  CAS  PubMed  Google Scholar 

  55. Ferguson RMW, Coulon F, Villa R (2016) Organic loading rate: a promising microbial management tool in anaerobic digestion. Water Res 100:348–356

    Article  CAS  PubMed  Google Scholar 

  56. Tian Q, Zhu J, Liang X, Zhu Y, Sand W, Yang J, Li F, Ma C, Liu Y, Yang B (2018) Microbial uniqueness of architecture modified loofah sponge as biological filler for efficient nitrogen removal. Bioresour Technol Rep 3:95–101

    Article  Google Scholar 

  57. Gagliano MC, Braguglia CM, Gianico A, Mininni G, Nakamura K, Rossetti S (2015) Thermophilic anaerobic digestion of thermal pretreated sludge: role of microbial community structure and correlation with process performances. Water Res 68:498–509

    Article  CAS  PubMed  Google Scholar 

  58. Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA, Webster G, Schwientek P, Kille P, Parkes RJ, Sass H, Jorgensen BB, Weightman AJ, Liu W-T, Hallam SJ, Tsiamis G, Woyke T, Hedlund BP (2016) Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J 10:273–286

    Article  CAS  PubMed  Google Scholar 

  59. Lee J, Kim E, Han G, Tongco JV, Shin SG, Hwang S (2018) Microbial communities underpinning mesophilic anaerobic digesters treating food wastewater or sewage sludge: a full-scale study. Bioresour Technol 259:388–397

    Article  CAS  PubMed  Google Scholar 

  60. Liu Y, Qiao J-T, Yuan X-Z, Guo R-B, Qiu Y-L (2014) Hydrogenispora ethanolica gen. nov., sp. nov., an anaerobic carbohydrate-fermenting bacterium from anaerobic sludge. Int J Syst Evol Microbiol 64:1756–1762

    Article  CAS  PubMed  Google Scholar 

  61. Liu C, Wu H, Liu S, Chai S, Meng Q, Zhou Z (2019) Dynamic alterations in Yak Rumen bacteria community and metabolome characteristics in response to feed type. Front Microbiol 10:1116

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported jointly by the National Key R&D Program of China (2019YFD1100603), the Key R&D Program of Jiangxi Province (20182ABC28006), Sichuan Province Science and Technology Support Program (2020ZHZY0008, 2020ZYD022, 2021ZHZY0016), the CAS “Light of West China” Program (2018XBZG_XBQNXZ_A_004, 2019XBZG_JCTD_ZDSYS_001), the Youth Innovation Promotion Association of CAS (2017423), Special fund for talented persons of Sichuan provincial Party Committee Organization Department. The data were analyzed on the free online platform of Majorbio I-sanger Cloud Platform (http://www.i-sanger.com).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Wan or Dong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 270 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, T., Xie, Z., Zhou, P. et al. Comparison of microbial community structures between mesophilic and thermophilic anaerobic digestion of vegetable waste. Bioprocess Biosyst Eng 44, 1201–1214 (2021). https://doi.org/10.1007/s00449-021-02519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02519-5

Keywords

Navigation