Skip to main content
Log in

Waste soybean frying oil for the production, extraction, and characterization of cell-wall-associated lipases from Yarrowia lipolytica

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The lipolytic yeast Yarrowia lipolytica produces cell-wall-associated lipases, namely Lip7p and Lip8p, that could have interesting properties as catalyst either in free (released lipase fraction—RLF) or cell-associated (cell-bound lipase fraction—CBLF) forms. Herein, a mixture of waste soybean frying oil, yeast extract and bactopeptone was found to favor the enzyme production. Best parameters for lipase activation and release from the cell wall by means of acoustic wave treatment were defined as: 26 W/cm2 for 1 min for CBLF and 52 W/cm2 for 2 min for RLF. Optimal pH and temperature values for lipase activity together with storage conditions were similar for both the free enzyme and cell-associated one: pH 7.0; T = 37 °C; and > 70% residual activity for 60 days at 4, − 4 °C and for 15 days at 30 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are available for transparency.

References

  1. Divakar S, Manohar B (2007) Use of lipases in the industrial production of esters. Ind Enzym Struct Funct Appl. https://doi.org/10.1007/1-4020-5377-0_17

    Article  Google Scholar 

  2. Ollis DL, Cheah E, Cygler M et al (1992) The a/|3 hydrolase fold. Protein Eng 5:197–211

    Article  CAS  Google Scholar 

  3. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183. https://doi.org/10.1042/0264-6021:3430177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fickers P, Marty A, Nicaud JM (2011) The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv 29:632–644. https://doi.org/10.1016/j.biotechadv.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  5. Ribeiro BD, De Castro AM, Coelho MAZ, Freire DMG (2011) Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res. https://doi.org/10.4061/2011/615803

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brígida AIS, Amaral PFF, Coelho MAZ, Gonçalves LRB (2014) Lipase from Yarrowia lipolytica: production, characterization and application as an industrial biocatalyst. J Mol Catal B Enzym 101:148–158. https://doi.org/10.1016/j.molcatb.2013.11.016

    Article  CAS  Google Scholar 

  7. Fickers P, Nicaud JM, Gaillardin C et al (2004) Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J Appl Microbiol 96:742–749. https://doi.org/10.1111/j.1365-2672.2004.02190.x

    Article  CAS  Google Scholar 

  8. Nunes PMB, Martins AB, Brígida AIS et al (2014) Intracellular lipase production by yarrowia lipolytica using different carbon sources. Chem Eng Trans 38:421–426. https://doi.org/10.3303/CET1438071

    Article  Google Scholar 

  9. Iftikhar T, Abdullah R, Iqtedar M et al (2015) Production of lipases by Alternaria sp. (mbl 2810) through optimization of environmental conditions using submerged fermentation technique. Int J Biosci 7:178–186. https://doi.org/10.12692/ijb/7.2.178-186

    Article  CAS  Google Scholar 

  10. Rywińska A, Witkowska D, Juszczyk P et al (2008) Waste frying oil as substrate for lipase production by Geotrichum candidum strains. Pol J Environ Stud 17:925–931

    Google Scholar 

  11. Moftah OAS, Grbavcic SZ, Moftah WAS et al (2013) Lipase production by Yarrowia lipolytica using olive oil processing wastes as substrates. J Serb Chem Soc 78:781–794. https://doi.org/10.2298/JSC120905005M

    Article  CAS  Google Scholar 

  12. da Pereira A, Fontes-Santna GC, Amaral PFF (2019) Mango agro-industrial wastes for lipase production from Yarrowia lipolytica and the potential of the fermented solid as a biocatalyst. Food Bioprod Process 115:68–77. https://doi.org/10.1016/j.fbp.2019.02.002

    Article  CAS  Google Scholar 

  13. Mateo C, Palomo JM, Fernandez-Lorente G et al (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018

    Article  CAS  Google Scholar 

  14. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235. https://doi.org/10.1039/c3cs60075k

    Article  CAS  PubMed  Google Scholar 

  15. Reis CLB, Sousa EYA, de Serpa J, F, et al (2019) Quim Nova. Quim Nova 42:768–783

    CAS  Google Scholar 

  16. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468. https://doi.org/10.1039/b711564b

    Article  CAS  PubMed  Google Scholar 

  17. Rodrigues RC, Ortiz C, Berenguer-Murcia Á et al (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307. https://doi.org/10.1039/c2cs35231a

    Article  CAS  PubMed  Google Scholar 

  18. Fukuda H, Hama S, Tamalampudi S, Noda H (2008) Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol 26:668–673. https://doi.org/10.1016/j.tibtech.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  19. Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237. https://doi.org/10.1016/S0168-6445(97)00002-8

    Article  CAS  PubMed  Google Scholar 

  20. Fickers P, Fudalej F, Le Dall MT et al (2005) Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet Biol 42:264–274. https://doi.org/10.1016/j.fgb.2004.12.003

    Article  CAS  Google Scholar 

  21. Ota Y, Gomi K, Kato S et al (1982) Purification and some properties of cell-bound lipase from Saccharomycopsis lipolytica. Agric Biol Chem 46:2885–2893. https://doi.org/10.1271/bbb1961.46.2885

    Article  CAS  Google Scholar 

  22. Haba E, Bresco O, Ferrer C et al (2000) Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzyme Microb Technol 26:40–44. https://doi.org/10.1016/S0141-0229(99)00125-8

    Article  CAS  Google Scholar 

  23. Goldsmith PD (2008) Economics of soybean production, marketing, and utilization. Soybeans Chem Prod Process Util. https://doi.org/10.1016/B978-1-893997-64-6.50008-1

    Article  Google Scholar 

  24. United States Department of Agriculture (2019) Brazil Soybean Oil Production by Year. In: https://www.indexmundi.com/agriculture/?country=br&commodity=soybean-oil&graph=production

  25. Yaakob Z, Mohammad M, Alherbawi M et al (2013) Overview of the production of biodiesel from Waste cooking oil. Renew Sustain Energy Rev 18:184–193. https://doi.org/10.1016/j.rser.2012.10.016

    Article  CAS  Google Scholar 

  26. Supple B, Howard-Hildige R, Gonzalez-Gomez E, Leahy JJ (2002) The effect of steam treating waste cooking oil on the yield of methyl ester. JAOCS, J Am Oil Chem Soc 79:175–178. https://doi.org/10.1007/s11746-002-0454-1

    Article  CAS  Google Scholar 

  27. Dizge N, Aydiner C, Imer DY et al (2009) Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour Technol 100:1983–1991. https://doi.org/10.1016/j.biortech.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  28. Sinisterra JV (1992) Application of ultrasound to biotechnology: an overview. Ultrasonics 30:180–185. https://doi.org/10.1016/0041-624X(92)90070-3

    Article  CAS  PubMed  Google Scholar 

  29. Knorr D, Zenker M, Heinz V, Lee DU (2004) Applications and potential of ultrasonics in food processing. Trends Food Sci Technol 15:261–266. https://doi.org/10.1016/j.tifs.2003.12.001

    Article  CAS  Google Scholar 

  30. Borthwick KAJ, Coakley WT, McDonnell MB et al (2005) Development of a novel compact sonicator for cell disruption. J Microbiol Methods 60:207–216. https://doi.org/10.1016/j.mimet.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  31. Kapturowska AU, Stolarzewicz IA, Krzyczkowska J, Białecka-Florjańczyk E (2012) Studies on the lipolytic activity of sonicated enzymes from Yarrowia lipolytica. Ultrason Sonochem 19:186–191. https://doi.org/10.1016/j.ultsonch.2011.06.015

    Article  CAS  PubMed  Google Scholar 

  32. Huang G, Chen S, Dai C et al (2017) Effects of ultrasound on microbial growth and enzyme activity. Ultrason Sonochem 37:144–149. https://doi.org/10.1016/j.ultsonch.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  33. Bansode SR, Rathod VK (2017) An investigation of lipase catalysed sonochemical synthesis: a review. Ultrason Sonochem 38:503–529. https://doi.org/10.1016/j.ultsonch.2017.02.028

    Article  CAS  PubMed  Google Scholar 

  34. Navarro López E, Robles Medina A, González Moreno PA et al (2016) Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase. Bioresour Technol 203:236–244. https://doi.org/10.1016/j.biortech.2015.12.036

    Article  CAS  PubMed  Google Scholar 

  35. Fraga JL, Penha ACB, da Pereira A et al (2018) Use of yarrowia lipolytica lipase immobilized in cell debris for the production of lipolyzed milk fat (Lmf). Int J Mol Sci. https://doi.org/10.3390/ijms19113413

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hagler AN, Mendonça-Hagler LC (1981) Yeasts from marine and estuarine waters with different levels of pollution in the state of Rio de Janeiro, Brazil. Appl Environ Microbiol 41:173–178. https://doi.org/10.1128/aem.41.1.173-178.1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  38. Fabiszewska AU, Kotyrba D, Nowak D (2015) Assortment of carbon sources in medium for Yarrowia lipolytica lipase production: a statistical approach. Ann Microbiol 65:1495–1503. https://doi.org/10.1007/s13213-014-0988-7

    Article  CAS  PubMed  Google Scholar 

  39. Beopoulos A, Chardot T, Nicaud JM (2009) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91:692–696. https://doi.org/10.1016/j.biochi.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  40. Pereira-Meirelles FV, Rocha-Leão MHM (2000) Lipase location in Yarrowia lipolytica cells. Biotechnol Lett 22:71–75. https://doi.org/10.1023/A:1005672731818

    Article  CAS  Google Scholar 

  41. Corzo G, Revah S (1999) Production and characteristics of the lipase from Yarrowia lipolytica 681. Bioresour Technol 70:173–180. https://doi.org/10.1016/S0960-8524(99)00024-3

    Article  CAS  Google Scholar 

  42. Ramos MJ, Fernández CM, Casas A et al (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268. https://doi.org/10.1016/j.biortech.2008.06.039

    Article  CAS  PubMed  Google Scholar 

  43. Liu WS, Pan XX, Jia B et al (2010) Surface display of active lipases Lip7 and Lip8 from Yarrowia Lipolytica on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88:885–891. https://doi.org/10.1007/s00253-010-2782-1

    Article  CAS  PubMed  Google Scholar 

  44. Zhao H, Zheng L, Wang X et al (2011) Cloning, expression and characterization of a new lipase from Yarrowia lipolytica. Biotechnol Lett 33:2445–2452. https://doi.org/10.1007/s10529-011-0711-8

    Article  CAS  PubMed  Google Scholar 

  45. Kumari A, Gupta R (2012) Extracellular expression and characterization of thermostable lipases, LIP8, LIP14 and LIP18, from Yarrowia lipolytica. Biotechnol Lett 34:1733–1739. https://doi.org/10.1007/s10529-012-0958-8

    Article  CAS  PubMed  Google Scholar 

  46. da Pereira S, Diniz MM, De Jong G et al (2019) Chitosan-alginate beads as encapsulating agents for Yarrowia lipolytica lipase: Morphological, physico-chemical and kinetic characteristics. Int J Biol Macromol 139:621–630. https://doi.org/10.1016/j.ijbiomac.2019.08.009

    Article  CAS  PubMed  Google Scholar 

  47. Brígida IS, Amaral FF, Gonçalves RB et al (2013) Yarrowia lipolytica IMUFRJ 50682: lipase production in a multiphase bioreactor. Curr Biochem Eng 1:65–74. https://doi.org/10.2174/22127119113019990005

    Article  CAS  Google Scholar 

  48. Carvalho T, Finotelli PV, Bonomo RCF et al (2017) Evaluating aqueous two-phase systems for Yarrowia lipolytica extracellular lipase purification. Process Biochem 53:259–266. https://doi.org/10.1016/j.procbio.2016.11.019

    Article  CAS  Google Scholar 

  49. Akil E, Carvalho T, Bárea B et al (2016) Accessing regio-and typo-selectivity of Yarrowia lipolytica lipase in its free form and immobilized onto magnetic nanoparticles. Biochem Eng J 109:101–111. https://doi.org/10.1016/j.bej.2015.12.019

    Article  CAS  Google Scholar 

Download references

Funding

The financial support of CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Ministry of Education, Brazil) and WBI (Wallonie Bruxelles International, Belgium, Grant no. 154157) is greatly acknowledged. P. Amaral received a research fellowship from FAPERJ (Fundação Carlos Chagas Filho de Amparo à Pesquisa no Estado do Rio de Janeiro) (Grant number E-26/202.870/2015 BOLSA) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) (Grant number 308626/2019–2).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PFFA, PF; data curation: PFFA; formal analysis: PMBN; funding acquisition: PFFA, PF; investigation: RBR, PMBN, JLF; methodology: JLF, PFFA, AISB, PF; project administration: PFFA, PF; resources: PFFA, PF; software: JLF, PFFA; supervision: PFFA, AISB, MHM-L, PF; validation: PMBN; visualization: PMBN, PFFA; roles/writing—original draft: PMBN; writing—review & editing: PFFA, PF.

Corresponding author

Correspondence to Priscilla F. F. Amaral.

Ethics declarations

Conflicts of interest

All authors declare no competing/ conflicts of interests. The funders had no decision on the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, P.M.B., Fraga, J.L., Ratier, R.B. et al. Waste soybean frying oil for the production, extraction, and characterization of cell-wall-associated lipases from Yarrowia lipolytica. Bioprocess Biosyst Eng 44, 809–818 (2021). https://doi.org/10.1007/s00449-020-02489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02489-0

Keywords

Navigation