Skip to main content

Advertisement

Log in

Development of a purification process via crystallization of xylitol produced for bioprocess using a hemicellulosic hydrolysate from the cashew apple bagasse as feedstock

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Xylitol was biotechnologically produced by Kluyveromyces marxianus ATCC36907 using the hemicellulosic hydrolysate of the cashew apple bagasse (CABHH). Sequentially, the present study investigated the recovery and purification of xylitol evaluating different antisolvents [ethanol, isopropanol and the ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA)], their proportion in the medium (10–90% v/v), and their cooling rate (VC 0.25–0.50 °C/min). These processes were contrasted with the crystallization process of commercial xylitol. This study is the first to assess xylitol crystallization using a protic ionic liquid. The hydrolysate obtained from a mild treatment with sulfuric acid contained mainly glucose and xylose at concentrations of 15.7 g/L and 11.9 g/L, respectively. With this bioprocess, a maximum xylitol production of 4.5 g/L was achieved. The performance of the investigated antisolvents was similar in all conditions evaluated in the crystallization process of the commercial xylitol, with no significant difference in yields. For the crystallization processes of the produced xylitol, the best conditions were: 50% (v/v) isopropanol as antisolvent, cooling rate of 0.5 °C/min, with a secondary nucleation of yield and purity of 69.7% and 84.8%, respectively. Under the same linear cooling rate, using ethanol, isopropanol or the protic ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA), crystallization did not occur, probably due to the presence of carbohydrates not metabolized by the yeast in the broth, which influences the solubility curve of xylitol. With the results of this work, a possible economical and environmentally friendly process of recovery and purification of xylitol from CABHH could be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Du H, Ma X, Jiang M, Yan P, Zhao Y, Conrad Zhang Z (2020) Efficient Ni/SiO2 catalyst derived from nickel phyllosilicate for xylose hydrogenation to xylitol. Catal Today. https://doi.org/10.1016/j.cattod.2020.04.009

    Article  Google Scholar 

  2. Albuquerque TL, Da Silva IJ, De Macedo G, Rocha MVP (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49:1779–1789

    Article  Google Scholar 

  3. Grand View Research Knowledgebase, Inc., (2020), United States http://www.grandviewresearch.com/industry-analysis/xylitol-market. Accessed 21 Mar 2020

  4. Tomonobu N, Komalasari NLGY, Sumardika IW, Jiang F, Chen Y, Yamamoto K, Sakaguchi M (2020) Xylitol acts as an anticancer monosaccharide to induce selective cancer death via regulation of the glutathione level. Chem-Biol Interact. https://doi.org/10.1016/j.cbi.2020.109085

    Article  PubMed  Google Scholar 

  5. Delgado Arcaño Y, Valmaña García OD, Mandelli D, Carvalho WA, Magalhães Pontes LA (2018) Xylitol: a review on the progress and challenges of its production by chemical route. Catal Today. https://doi.org/10.1016/j.cattod.2018.07.060

    Article  Google Scholar 

  6. Baptista SL, Cunha JT, Romaní A, Domingues L (2018) Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. Bioresour Technol 267:481–491

    Article  CAS  Google Scholar 

  7. Mohamada NL, Mustapa Kamala SM, Mokhtara MN (2015) Xylitol biological production: a review of recent studies. Food Rev Int 31:74–89

    Article  Google Scholar 

  8. Padilha CEA, Nogueira CC, Oliveira Filho MA, Souza DFS, de Oliveira JA, Santos ES (2019) Valorization of cashew apple bagasse using acetic acid pretreatment: production of cellulosic ethanol and lignin for their use as sunscreen ingredients. Process Biochem. https://doi.org/10.1016/j.procbio.2019.11.029

    Article  Google Scholar 

  9. Wei Han W, Xu X, Gaoc Y, He H, Chen L, Tian X, Hou P (2019) Utilization of waste cake for fermentative ethanol production. Sci Total Environ 673:378–383

    Article  Google Scholar 

  10. Dasgupta D, Bandhu S, Adhikari DK, Ghosh D (2017) Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiol Res 197:9–21

    Article  CAS  Google Scholar 

  11. López-Linares JC, Romero I, Cara C, Castro E, Mussatto SI (2018) Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour Technol 247:736–743

    Article  Google Scholar 

  12. de Albuquerque TL, Gomes SD, Marques JE Jr, da Silva Jr IJ, Rocha MVP (2015) Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catal Today 255:33–40

    Article  Google Scholar 

  13. Kumar V, Krishania M, Preet Sandhu P, Ahluwalia V, Gnansounou E, Sangwan RS (2018) Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresour Technol 251:416–419

    Article  CAS  Google Scholar 

  14. Rocha MVP, Rodrigues THS, Albuquerque TL, Goncalves LRB, Macedo GR (2014) Evaluation of dilute acid pretreatment on cashew apple bagasse for ethanol and xylitol production. Chem Eng J 243:234–243

    Article  CAS  Google Scholar 

  15. Serpa JF, Silva JS, Reis CLB, Micoli L, AlexandreeSilva LM, Canuto KM, de Macedo AC, Rocha MVP (2020) Extraction and characterization of lignins from cashew apple bagasse obtained by different treatments. Biomass Bioenergy 141:105728

    Article  Google Scholar 

  16. Kresnowati MTAP, Regina D, Bella C, Wardani AK, Wenten I (2019) Combined ultrafiltration and electrodeionization techniques for microbial xylitol purification. Food Bioprod Process Process. https://doi.org/10.1016/j.fbp.2019.01.005

    Article  Google Scholar 

  17. Wei J, Yuan Q, Wang T, Wang L (2010) Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Front Chem Eng China 1:57–64

    Article  Google Scholar 

  18. Sampaio FC, Passos FML, Passos FJV, Faveri D, Perego P, Converti A (2006) Xylitol crystallization from culture media fermented by yeasts. Chem Eng Process 45:1041–1046

    Article  CAS  Google Scholar 

  19. Bermingham SK, Verheijen PJT, Kramer HJM (2003) Optimal design of solution crystallization processes with rigorous models. Chem Eng Res Des 81:893–903

    Article  CAS  Google Scholar 

  20. Camêlo LCA, Santos GSD, Souza RL, Soares CMF, Pereira JFB, Silva AL (2019) Protic ionic liquids as constituent of aqueous two-phase system based on acetonitrile: synthesis, phase diagrams and genipin pre-purification. Fluid Phase Equilib. https://doi.org/10.1016/j.fluid.2019.112425

    Article  Google Scholar 

  21. Reis CLB, Silva LMA, Rodrigues THS, Félix AKN, Santiago-Aguiar RS, de Canuto KM, Rocha MVP (2017) Pretreatment of cashew apple bagasse using protic ionic liquids: enhanced enzymatic hydrolysis. Bioresour Technol 224:694–701

    Article  CAS  Google Scholar 

  22. Penttilä A, Uusi-Kyyny P, Salminen A, Seppälä J, Alopaeus V (2014) A comprehensive thermodynamic study of heat stable acetic acid salt of monoethanolamine. Int J Greenh Gas Control 22:313–324

    Article  Google Scholar 

  23. Gouveia ER, Do Nascimento RT, Souto-Maior AM, Rocha GJM, Rocha GJM (2009) Validação de metodologia para a caracterização química de bagaço de cana de-açúcar. Quim Nova 32:1500–1503

    Article  CAS  Google Scholar 

  24. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D, Wolfe J (2008a) Determination of total solids in biomass and total dissolved solids in liquid process samples laboratory analytical procedure (LAP) Issue Date: 3/31/2008. Technical Report NREL/TP-510-42621 Revised March 2008

  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008b) Determination of structural carbohydrates and lignin in biomass laboratory analytical procedure (LAP) issue date: 4/25/2008. Technical Report NREL/TP-510-42618. Revised April 2008

  26. Poling BE, Prausnitz JM, O'Connell JP (2001) The properties of gases and liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  27. Govumoni SP, Koti S, Kothagouni YS, Venkateshwar S, Linga VR (2013) Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. Carbohydr Polym 91:646–650

    Article  CAS  Google Scholar 

  28. Zhang Y, Wang L, Li T, Shen Y, Luo J (2020) Acid soaking followed by steam flash-explosion pretreatment to enhance saccharification of rice husk for poly(3-hydroxybutyrate) production. Int J Biol Macromol 160:446–455

    Article  CAS  Google Scholar 

  29. Rocha GJM, Martin C, Soares IB, Maior AMS, Baudel HM, Abreu CAM (2011) Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioenergy 35:663–670

    Article  Google Scholar 

  30. Castro JF, Parra C, Ya M, Rojas J, Teixeira R, Baeza J, Freer J (2013) Optimal pretreatment of Eucalyptus globulus by hydrothermolysis andalkaline extraction for microbial production of ethanol and xylitol. Ind Eng Chem Res 52:5713–5720

    Article  CAS  Google Scholar 

  31. Mateo S, Roberto IC, Sánchez S, Moya AJ (2013) Detoxification of hemicellulosic hydrolyzate from olive tree pruning residue. Ind Crop Prod 49:196–203

    Article  CAS  Google Scholar 

  32. Rocha MVP, Rodrigues THS, Melo VMM, Gonçalves LRB, Macedo GR (2011) Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025. J Ind Microb Biot 38:1099–1107

    Article  CAS  Google Scholar 

  33. Zhang J, Zhang B, Wang D, Gao X, Hong J (2014) Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour Technol 152:192–201

    Article  CAS  Google Scholar 

  34. Martínez EA, Giulietti M, Silva JBA, Derenzo S (2008) Kinetics of the xylitol crystallization in hydro-alcoholic solution. Chem Eng Proc 47:2157–2162

    Article  Google Scholar 

  35. Diniz LF, Souza MS, Carvalho PS, Correa CC, Ellena J (2018) Modulating the water solubility and thermal stability of the anti-tuberculosis drug Isoniazid via multicomponent crystal formation. J Mol Struct 1171:223–232

    Article  CAS  Google Scholar 

  36. Giulietti M, Seckler MM, Derenzo S, RéMI Cekinski E (2001) Industrial crystallization and precipitation from solutions: state of the technique. Braz J Chem Eng 18:423–440

    Article  CAS  Google Scholar 

  37. Misra S, Gupta P, Raghuwanshi S, Dutt K, Saxena RK (2011) Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep Purif Technol 78:266–273

    Article  CAS  Google Scholar 

  38. Faneer KA, Rohania R, Mohammad AW (2018) Influence of pluronic addition on polyethersulfone membrane for xylitol recovery from biomass fermentation solution. J Clean Prod 171:995–1005

    Article  CAS  Google Scholar 

  39. De Faveri D, Perego P, Converti A, Del Borghi M (2002) Xylitol recovery by crystallization from synthetic solutions and fermented hemicellulosic hydrolysates. Chem Eng J 90:291–296

    Article  Google Scholar 

  40. Kaialy W, Maniruzzaman M, Shojaee S, Nokhodchi A (2014) Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance. Int J Pharm 477:282–293

    Article  CAS  Google Scholar 

  41. Affleck RP (2000) Recovery of xylitol from fermentation of model hydrolysate using membrane technology. Thesis of Master of Science. State University of Virginia

  42. Yang Y, Kong W, Cai X (2018) Solvent-free preparation and performance of novel xylitol based solid-solid phase change materials for thermal energy storage. Energy Build 158:37–42

    Article  Google Scholar 

  43. Hao H, Hou B, Wang JK, Lin G (2006) Effect of solvent on crystallization behavior of xylitol. J Cryst Growth 290:192–196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by the Brazilian research agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (Grant no. 306949/2018-0),Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES and Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico - FUNCAP (Process DEP-0164-00357.01.00/19), and would like to thank Jandaia Sucos do Brasil S/A for the cashew apple bagasse donated. We also thank the Analytical Central of the Universidade Federal do Ceará for their invaluable help with the SEM analysis, and the Applied Thermodynamics Research Group (GPTA) for the FTIR, and X-ray Laboratory of the Universidade Federal do Ceará by X-ray analyses (CNPq Process: 402561/2007-4—MCT/CNPq nº 10/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Valderez Ponte Rocha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques Júnior, J.E., Rocha, M.V.P. Development of a purification process via crystallization of xylitol produced for bioprocess using a hemicellulosic hydrolysate from the cashew apple bagasse as feedstock. Bioprocess Biosyst Eng 44, 713–725 (2021). https://doi.org/10.1007/s00449-020-02480-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02480-9

Keywords

Navigation