Skip to main content
Log in

Deconstruction of banana peel for carbohydrate fractionation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The deconstruction of banana peel for carbohydrate recovery was performed by sequential treatment (acid, alkaline, and enzymatic). The pretreatment with citric acid promoted the extraction of pectin, resulting in a yield of 8%. In addition, xylose and XOS, 348.5 and 17.3 mg/g xylan, respectively, were also quantified in acidic liquor as a result of partial depolymerization of hemicellulose. The spent solid was pretreated with alkaline solution (NaOH or KOH) for delignification and release of residual carbohydrates from the hemicellulose. The yields of xylose and arabinose (225.2 and 174.0 mg/g hemicellulose) were approximately 40% higher in the pretreatment with KOH, while pretreatment with NaOH promoted higher delignification (67%), XOS yield (32.6 mg/g xylan), and preservation of cellulosic fraction. Finally, the spent alkaline solid, rich in cellulose (76%), was treated enzymatically to release glucose, reaching the final concentration of 28.2 g/L. The mass balance showed that through sequential treatment, 9.9 g of xylose, 0.5 g of XOS, and 8.2 g of glucose were obtained from 100 g of raw banana peels, representing 65.8% and 46.5% conversion of hemicellulose and cellulose, respectively. The study of the fractionation of carbohydrates in banana peel proved to be a useful tool for valorization, mainly of the hemicellulose fraction for the production of XOS and xylose with high value applications in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mohapatra D, Mishra S, Sutar N (2010) Banana and its by-product utilisation: an overview. J Sci Ind Res (India) 69:323–329

    CAS  Google Scholar 

  2. Odedina MJ, Charnnok B, Saritpongteeraka K, Chaiprapat S (2017) Effects of size and thermophilic pre-hydrolysis of banana peel during anaerobic digestion, and biomethanation potential of key tropical fruit wastes. Waste Manag 68:128–138. https://doi.org/10.1016/J.WASMAN.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  3. Rebello LPG, Ramos AM, Pertuzatti PB et al (2014) Flour of banana (Musa AAA) peel as a source of antioxidant phenolic compounds. Food Res Int 55:397–403. https://doi.org/10.1016/j.foodres.2013.11.039

    Article  CAS  Google Scholar 

  4. FAOSTAT (2019) FAO statistical database. https://www.fao.org/faostat/en/#data/QC. Accessed 19 Mar 2020

  5. Gurumallesh P, Ramakrishnan B, Dhurai B (2019) A novel metalloprotease from banana peel and its biochemical characterization. Int J Biol Macromol 134:527–535. https://doi.org/10.1016/j.ijbiomac.2019.05.051

    Article  CAS  PubMed  Google Scholar 

  6. Oliveira TÍS, Rosa MF, Cavalcante FL et al (2016) Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chem 198:113–118. https://doi.org/10.1016/J.FOODCHEM.2015.08.080

    Article  CAS  PubMed  Google Scholar 

  7. Oberoi HS, Sandhu SK, Vadlani PV (2012) Statistical optimization of hydrolysis process for banana peels using cellulolytic and pectinolytic enzymes. Food Bioprod Process 90:257–265. https://doi.org/10.1016/j.fbp.2011.05.002

    Article  CAS  Google Scholar 

  8. Nanda S, Azargohar R, Dalai AK, Kozinski JA (2015) An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sustain Energy Rev 50:925–941. https://doi.org/10.1016/J.RSER.2015.05.058

    Article  CAS  Google Scholar 

  9. Houfani AA, Anders N, Spiess AC et al (2020) Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars—a review. Biomass Bioenerg 134:105481

    Article  CAS  Google Scholar 

  10. Galbe M, Wallberg O (2019) Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol Biofuels 12:294. https://doi.org/10.1186/s13068-019-1634-1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kleinert M, Barth T (2008) Phenols from lignin. Chem Eng Technol 31:736–745. https://doi.org/10.1002/ceat.200800073

    Article  CAS  Google Scholar 

  12. Totong S, Daorattanachai P, Laosiripojana N, Idem R (2020) Catalytic depolymerization of alkaline lignin to value-added phenolic-based compounds over Ni/CeO2-ZrO2 catalyst synthesized with a one-step chemical reduction of Ni species using NaBH4 as the reducing agent. Fuel Process Technol. https://doi.org/10.1016/j.fuproc.2019.106248

    Article  Google Scholar 

  13. Swamy GJ, Muthukumarappan K (2017) Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chem 220:108–114. https://doi.org/10.1016/J.FOODCHEM.2016.09.197

    Article  CAS  PubMed  Google Scholar 

  14. de Arquelau PBF, Silva VDM, Garcia MAVT et al (2019) Characterization of edible coatings based on ripe “Prata” banana peel flour. Food Hydrocoll 89:570–578. https://doi.org/10.1016/J.FOODHYD.2018.11.029

    Article  CAS  Google Scholar 

  15. Oberoi HS, Vadlani PV, Saida L et al (2011) Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process. Waste Manag 31:1576–1584. https://doi.org/10.1016/J.WASMAN.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  16. Sari SN, Melati A (2019) Facile preparation of carbon nanofiber from banana peel waste. Mater Today Proc 13:165–168. https://doi.org/10.1016/J.MATPR.2019.03.208

    Article  CAS  Google Scholar 

  17. Passo Tsamo CV, Herent M-F, Tomekpe K et al (2015) Effect of boiling on phenolic profiles determined using HPLC/ESI-LTQ-Orbitrap-MS, physico-chemical parameters of six plantain banana cultivars (Musa sp). J Food Compos Anal 44:158–169. https://doi.org/10.1016/J.JFCA.2015.08.012

    Article  CAS  Google Scholar 

  18. Jambo SA, Abdulla R, Mohd Azhar SH et al (2016) A review on third generation bioethanol feedstock. Renew Sustain Energy Rev 65:756–769. https://doi.org/10.1016/J.RSER.2016.07.064

    Article  CAS  Google Scholar 

  19. Phwan CK, Ong HC, Chen W-H et al (2018) Overview: comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae. Energy Convers Manag 173:81–94. https://doi.org/10.1016/J.ENCONMAN.2018.07.054

    Article  CAS  Google Scholar 

  20. Carvalho AFA, Marcondes WF, de Oliva NP et al (2018) The potential of tailoring the conditions of steam explosion to produce xylo-oligosaccharides from sugarcane bagasse. Bioresour Technol 250:221–229. https://doi.org/10.1016/j.biortech.2017.11.041

    Article  CAS  PubMed  Google Scholar 

  21. Rai P, Pandey A, Pandey A (2019) Optimization of sugar release from banana peel powder waste (BPPW) using box-behnken design (BBD): BPPW to biohydrogen conversion. Int J Hydrogen Energy 44:25505–25513. https://doi.org/10.1016/j.ijhydene.2019.07.168

    Article  CAS  Google Scholar 

  22. Heitner C, Dimmel D, Schmidt J (2010) Lignin and lignans: advances in chemistry. CRC Press, Boca Raton

    Google Scholar 

  23. Boonchuay P, Techapun C, Leksawasdi N et al (2018) An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresour Technol 256:399–407. https://doi.org/10.1016/J.BIORTECH.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  24. Instituto Adolf Lutz (1985) Normas Analíticas do Instituto Adolfo Lutz. IMESP, São Paulo

    Google Scholar 

  25. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of extractives in biomass (LAP). NREL. Golden, Co., USA

    Google Scholar 

  26. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton DCD (2012) Determination of structural carbohydrates and lignin in biomass (LAP). NREL. Golden Co., USA

    Google Scholar 

  27. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  28. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with P-molybdic tungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  29. Harini K, Ramya K, Sukumar M (2018) Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose. Carbohydr Polym 201:329–339. https://doi.org/10.1016/j.carbpol.2018.08.081

    Article  CAS  PubMed  Google Scholar 

  30. Happi Emaga T, Robert C, Ronkart SN et al (2008) Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresour Technol 99:4346–4354. https://doi.org/10.1016/J.BIORTECH.2007.08.030

    Article  CAS  PubMed  Google Scholar 

  31. Jamal P, Saheed OK, Alam Z (2012) Bio-valorization potentil of banana peels. Asisan J Biotechnol 4:1–14

    Google Scholar 

  32. Wilkie KCB (1985) New perspectives on non-cellulosic cell-wall polysaccharides (hemicelluloses and pectic substances) of land plants. Cambridge University Press, Cambridge

    Google Scholar 

  33. Maran JP, Priya B, Al-Dhabi NA et al (2017) Ultrasound assisted citric acid mediated pectin extraction from industrial waste of Musa balbisiana. Ultrason Sonochem 35:204–209. https://doi.org/10.1016/J.ULTSONCH.2016.09.019

    Article  CAS  PubMed  Google Scholar 

  34. Gírio FM, Fonseca C, Carvalheiro F et al (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800. https://doi.org/10.1016/J.BIORTECH.2010.01.088

    Article  PubMed  Google Scholar 

  35. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700. https://doi.org/10.1016/j.procbio.2005.04.006

    Article  CAS  Google Scholar 

  36. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. https://doi.org/10.3390/ijms9091621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gomes GM, Vinícius Alves GL, Alves BM, Daniel P (2020) Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis. Renew Energy 157:332–341. https://doi.org/10.1016/j.renene.2020.05.002

    Article  CAS  Google Scholar 

  38. Rattanaporn K, Tantayotai P, Phusantisampan T et al (2018) Organic acid pretreatment of oil palm trunk: Effect on enzymatic saccharification and ethanol production. Bioprocess Biosyst Eng 41:467–477. https://doi.org/10.1007/s00449-017-1881-0

    Article  CAS  PubMed  Google Scholar 

  39. de Rocha GJ, M, Nascimento VM, Gonçalves AR, et al (2015) Influence of mixed sugarcane bagasse samples evaluated by elemental and physical–chemical composition. Ind Crops Prod 64:52–58. https://doi.org/10.1016/J.INDCROP.2014.11.003

    Article  CAS  Google Scholar 

  40. Huang C, Lin W, Lai C et al (2019) Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues. Bioresour Technol 285:121355. https://doi.org/10.1016/j.biortech.2019.121355

    Article  CAS  PubMed  Google Scholar 

  41. Shahabazuddin M, Sarat Chandra T, Meena S et al (2018) Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: physico-chemical and structural characterization. Bioresour Technol 263:199–206. https://doi.org/10.1016/j.biortech.2018.04.027

    Article  CAS  PubMed  Google Scholar 

  42. de Buanafina OMM (2009) Feruloylation in grasses: current and future perspectives. Mol Plant 2:861–872. https://doi.org/10.1093/MP/SSP067

    Article  CAS  Google Scholar 

  43. González-Montelongo R, Gloria Lobo M, González M (2010) Antioxidant activity in banana peel extracts: testing extraction conditions and related bioactive compounds. Food Chem 119:1030–1039. https://doi.org/10.1016/j.foodchem.2009.08.012

    Article  CAS  Google Scholar 

  44. Szalaty TJ, Klapiszewski Ł, Jesionowski T (2020) Recent developments in modification of lignin using ionic liquids for the fabrication of advanced materials–a review. J Mol Liq 301:112417. https://doi.org/10.1016/j.molliq.2019.112417

    Article  CAS  Google Scholar 

  45. Poletto P, Pereira GN, Monteiro CRM et al (2020) Xylooligosaccharides: transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochem 91:352–363. https://doi.org/10.1016/j.procbio.2020.01.005

    Article  CAS  Google Scholar 

  46. Ávila PF, Franco Cairo JPL, Damasio A et al (2020) Xylooligosaccharides production from a sugarcane biomass mixture: effects of commercial enzyme combinations on bagasse/straw hydrolysis pretreated using different strategies. Food Res Int 128:108702. https://doi.org/10.1016/J.FOODRES.2019.108702

    Article  PubMed  Google Scholar 

  47. Palacios S, Ruiz HA, Ramos-Gonzalez R et al (2017) Comparison of physicochemical pretreatments of banana peels for bioethanol production. Food Sci Biotechnol 26:993–1001. https://doi.org/10.1007/s10068-017-0128-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou X, Zhao J, Zhang X, Xu Y (2019) An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst. Bioresour Technol 289:4–7. https://doi.org/10.1016/j.biortech.2019.121755

    Article  CAS  Google Scholar 

  49. Kusrini E, Aulia M, Widiantoro AB et al (2018) Synthesis and characterization of natural, pectin and activated carbon as low cost potential adsorbents from kepok banana peels (Musa paradisiaca L). IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/440/1/012030

    Article  Google Scholar 

  50. Lin W, Xing S, Jin Y et al (2020) Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. Bioresour Technol 306:123163. https://doi.org/10.1016/j.biortech.2020.123163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CAPES-PRINT, project number 88887.310560/2018-00 and FAPESP, project number 2019/08542-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Poletto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, M.A.F., Monteiro, C.R.M., Pereira, G.N. et al. Deconstruction of banana peel for carbohydrate fractionation. Bioprocess Biosyst Eng 44, 297–306 (2021). https://doi.org/10.1007/s00449-020-02442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02442-1

Keywords

Navigation