Skip to main content

Advertisement

Log in

Investigating the potential of locally sourced wastewater as a feedstock of microbial desalination cell (MDC) for bioenergy production

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Freshwater sources are limited and access to clean water is an acute challenge in recent decades. The sustainable water treatments methods are need of time and water desalination is one of the most interesting technology. Most desalination technologies are required high energy input while Microbial Desalination Cells (MDCs) represent a sustainable option that has added benefit of solving the ever-increasing wastewater treatment and management problem. MDCs are a customized type of Microbial Fuel Cells (MFCs) that depend on the electric potential generated by organic media to decrease salt concentration by electro-dialysis and give an unconventional way of clean water production. In this research, various experiments were conducted to examine the desalination ability of an indigenously designed experimental setup using domestic wastewater inoculated with sewage sludge under identical conditions. The electrochemical properties of the system, comprising the polarization curve and Electrochemical Impedance Spectroscopy (EIS), were examined along with the scope of chemical oxygen demand (COD) exclusion, to distinguish the cell behaviour. Furthermore, acidic water and Phosphate Buffer Solution (PBS) were tested as potential catholytes compared to the performance of the wastewater was gauged at various salt concentrations. The maximum salt removal efficiency was 31%, power density and current density were 32 mW-m−2 and 246 mA-m−2 respectively at a salt concentration of 35 g-L−1 that decreases with a decline in salt concentration. The maximum achieved power density and current density were 32 mW-m−2 and 246 mA-m−2 respectively. The applied method has huge potential to scaleup for large scale application in coastal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al-Mamun A, Ahmad W, Baawain MS, Khadem M, Dhar BR (2018) A review of microbial desalination cell technology: configurations, optimization and applications. J Clean Prod 183:458–480. https://doi.org/10.1016/j.jclepro.2018.02.054

    Article  CAS  Google Scholar 

  2. Angelov A, Bratkova S, Loukanov A (2013) Microbial fuel cell based on electroactive sulfate-reducing biofilm. Energy Convers Manag 67:283–286. https://doi.org/10.1016/j.enconman.2012.11.024

    Article  CAS  Google Scholar 

  3. Ansari AA, Khoja AH, Nawar A, Qayyum M, Ali E (2017) Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production. Appl Water Sci 7(7):4151–4158. https://doi.org/10.1007/s13201-017-0574-9

    Article  CAS  Google Scholar 

  4. Brastad KS, He Z (2013) Water softening using microbial desalination cell technology. Desalination 309:32–37. https://doi.org/10.1016/j.desal.2012.09.015

    Article  CAS  Google Scholar 

  5. Burn S, Hoang M, Zarzo D, Olewniak F, Campos E, Bolto B, Barron O (2015) Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination 364:2–16

    Article  CAS  Google Scholar 

  6. Chakraborty I, Sathe S, Khuman C, Ghangrekar M (2020) Bioelectrochemically powered remediation of xenobiotic compounds and heavy metal toxicity using microbial fuel cell and microbial electrolysis cell. Mater Sci Energy Technol 3:104–115

    Google Scholar 

  7. Chen S, Luo HP, Liu GL, Zhang RD, Wang HH, Qin BY, Hou YP (2013) Integrated utilization of seawater using a five-chamber bioelectrochemical system. J Membr Sci 444:16–21. https://doi.org/10.1016/j.memsci.2013.05.027

    Article  CAS  Google Scholar 

  8. Chen X, Xia X, Liang P, Cao X, Sun H, Huang X (2011) Stacked microbial desalination cells to enhance water desalination efficiency. Environ Sci Technol 45(6):2465–2470. https://doi.org/10.1021/es103406m

    Article  CAS  PubMed  Google Scholar 

  9. Ebrahimi A, Yousefi Kebria D, Darzi GN (2018) Improving bioelectricity generation and COD removal of sewage sludge in microbial desalination cell. Environ Technol 39(9):1188–1197. https://doi.org/10.1080/09593330.2017.1323958

    Article  CAS  PubMed  Google Scholar 

  10. Feng C, Li J, Qin D, Chen L, Zhao F, Chen S, Yu CP (2014) Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load. PLoS ONE 9(11):e113379. https://doi.org/10.1371/journal.pone.0113379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gude VG, Nirmalakhandan N, Deng SG (2010) Renewable and sustainable approaches for desalination. Renew Sustain Energy Rev 14(9):2641–2654. https://doi.org/10.1016/j.rser.2010.06.008

    Article  CAS  Google Scholar 

  12. He Z, Mansfeld F (2009) Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ Sci 2(2):215–219. https://doi.org/10.1039/b814914c

    Article  CAS  Google Scholar 

  13. Irujo AE (2007) The right to water. Int J Water Resour Dev 23(2):267–283. https://doi.org/10.1080/07900620601182968

    Article  Google Scholar 

  14. Jacobson KS, Drew DM, He Z (2011) Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresour Technol 102(1):376–380. https://doi.org/10.1016/j.biortech.2010.06.030

    Article  CAS  PubMed  Google Scholar 

  15. Jacobson KS, Drew DM, He Z (2011) Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ Sci Technol 45(10):4652–4657. https://doi.org/10.1021/es200127p

    Article  CAS  PubMed  Google Scholar 

  16. Jauto A, Memon S, Channa A, Khoja A (2019) Efficient removal of cyanide from industrial effluent using acid treated modified surface activated carbon. Energy Sour. https://doi.org/10.1080/15567036.2019.1568643

    Article  Google Scholar 

  17. Jingyu H, Ewusi-Mensah D, Norgbey E (2017) Microbial desalination cells technology: a review of the factors affecting the process, performance and efficiency. Desalin Water Treat 87:140–159

    Article  Google Scholar 

  18. Johnson T, Butcher J, Parker A, Weaver C (2012) Investigating the sensitivity of US streamflow and water quality to climate change: US EPA Global Change Research Program’s 20 Watersheds Project. J Water Resour Plan Manag 138(5):453–464

    Article  Google Scholar 

  19. Jung S, Lee J, Park YK, Kwon EE (2020) Bioelectrochemical systems for a circular bioeconomy. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.122748

    Article  PubMed  Google Scholar 

  20. Kaur A (2020) Applications of nanomaterials for water treatment. Waste management. IGI Global, Hershey, pp 423–435

    Chapter  Google Scholar 

  21. Khoja AH, Tahir M, Saidina Amin NA (2019) Process optimization of DBD plasma dry reforming of methane over Ni/La2O3–MgAl2O4 using multiple response surface methodology. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.03.059

    Article  Google Scholar 

  22. Kokabian B, Gude VG (2015) Sustainable photosynthetic biocathode in microbial desalination cells. Chem Eng J 262:958–965. https://doi.org/10.1016/j.cej.2014.10.048

    Article  CAS  Google Scholar 

  23. Kokabian B, Gude VG (2019) Microbial desalination systems for energy and resource recovery. In: Mohan SV, Varjani S, Pandey A (eds) Microbial electrochemical technology. Elsevier, Amsterdam, pp 999–1020

    Chapter  Google Scholar 

  24. LaPara TM, Alleman JE, Pope PG (2000) Miniaturized closed reflux, colorimetric method for the determination of chemical oxygen demand. Waste Manag 20(4):295–298. https://doi.org/10.1016/S0956-053x(99)00304-9

    Article  CAS  Google Scholar 

  25. Lee CK, Park C, Woo YC, Choi JS, Kim JO (2020) A pilot study of spiral-wound air gap membrane distillation process and its energy efficiency analysis. Chemosphere 239:124696. https://doi.org/10.1016/j.chemosphere.2019.124696

    Article  CAS  PubMed  Google Scholar 

  26. Logan B, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  CAS  Google Scholar 

  27. Luo H, Xu P, Roane TM, Jenkins PE, Ren Z (2012) Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour Technol 105:60–66. https://doi.org/10.1016/j.biortech.2011.11.098

    Article  CAS  PubMed  Google Scholar 

  28. Malakootian M, Mandizadeh H, Nasiri A, Mirzaienia F, Hajhoseini M, Amirmahani N (2018) Investigation of the efficiency of microbial desalination cell in removal of arsenic from aqueous solutions. Desalination 438:19–23. https://doi.org/10.1016/j.desal.2018.03.025

    Article  CAS  Google Scholar 

  29. Mehanna M, Saito T, Yan JL, Hickner M, Cao XX, Huang X, Logan BE (2010) Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ Sci 3(8):1114–1120. https://doi.org/10.1039/c002307h

    Article  CAS  Google Scholar 

  30. Nancharaiah YV, Venkata Mohan S, Lens PN (2015) Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 195:102–114. https://doi.org/10.1016/j.biortech.2015.06.058

    Article  CAS  PubMed  Google Scholar 

  31. Nayar KG, Lienhard JH (2020) Brackish water desalination for greenhouse agriculture: comparing the costs of RO, CCRO, EDR, and monovalent-selective EDR. Desalination 475:114188. https://doi.org/10.1016/j.desal.2019.114188

    Article  CAS  Google Scholar 

  32. Oki T (2020) World water resources at stake. Human geoscience. Springer, Berlin, pp 89–95

    Chapter  Google Scholar 

  33. Ping Q, Huang Z, Dosoretz C, He Z (2015) Integrated experimental investigation and mathematical modeling of brackish water desalination and wastewater treatment in microbial desalination cells. Water Res 77:13–23. https://doi.org/10.1016/j.watres.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  34. Ping Q, Zhang C, Chen X, Zhang B, Huang Z, He Z (2014) Mathematical model of dynamic behavior of microbial desalination cells for simultaneous wastewater treatment and water desalination. Environ Sci Technol 48(21):13010–13019. https://doi.org/10.1021/es504089x

    Article  CAS  PubMed  Google Scholar 

  35. Ping QY, Cohen B, Dosoretz C, He Z (2013) Long-term investigation of fouling of cation and anion exchange membranes in microbial desalination cells. Desalination 325:48–55. https://doi.org/10.1016/j.desal.2013.06.025

    Article  CAS  Google Scholar 

  36. Ramos HM, McNabola A, López-Jiménez PA, Pérez-Sánchez M (2020) Smart water management towards future water sustainable networks. Water 12(1):58

    Article  Google Scholar 

  37. Rustum R, Kurichiyanil AMJ, Forrest S, Sommariva C, Adeloye AJ, Zounemat-Kermani M, Scholz M (2020) Sustainability ranking of desalination plants using mamdani fuzzy logic inference systems. Sustainability 12(2):631

    Article  Google Scholar 

  38. Saeed HM, Husseini GA, Yousef S, Saif J, Al-Asheh S, Abu Fara A, Aidan A (2015) Microbial desalination cell technology: a review and a case study. Desalination 359:1–13. https://doi.org/10.1016/j.desal.2014.12.024

    Article  CAS  Google Scholar 

  39. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sour 356:225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109

    Article  CAS  Google Scholar 

  40. Sevda S, Abu-Reesh IM, Yuan HY, He Z (2017) Bioelectricity generation from treatment of petroleum refinery wastewater with simultaneous seawater desalination in microbial desalination cells. Energy Convers Manag 141:101–107. https://doi.org/10.1016/j.enconman.2016.05.050

    Article  CAS  Google Scholar 

  41. Sevda S, Sharma S, Joshi C, Pandey L, Tyagi N, Abu-Reesh I, Sreekrishnan T (2018) Biofilm formation and electron transfer in bioelectrochemical systems. Environ Technol Rev 7(1):220–234

    Article  CAS  Google Scholar 

  42. Wen QX, Zhang HC, Chen ZQ, Li YF, Nan J, Feng YJ (2012) Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination. Biores Technol 125:108–113. https://doi.org/10.1016/j.biortech.2012.08.14

    Article  CAS  Google Scholar 

  43. Xingtao Z, Lili W, Jiajie H, Zhenhua L, Shuili Y (2014) SEM-EDX studies of SiO2/PVDF membranes fouling in electrodialysis of polymer-flooding produced wastewater: diatomite, APAM and crude oil. Desalination 347:43–51

    Article  Google Scholar 

  44. Xu C, Lu J, Zhao Z, Lu X, Zhang Y, Cheng M, Zhang J (2020) Simultaneous bioelectricity generation, desalination, organics degradation, and nitrogen removal in air–cathode microbial desalination cells. SN Appl Sci 2(2):212

    Article  CAS  Google Scholar 

  45. Yang E, Chae KJ, Choi MJ, He Z, Kim IS (2019) Critical review of bioelectrochemical systems integrated with membrane-based technologies for desalination, energy self-sufficiency, and high-efficiency water and wastewater treatment. Desalination 452:40–67. https://doi.org/10.1016/j.desal.2018.11.007

    Article  CAS  Google Scholar 

  46. Yuan HY, Abu-Reesh IM, He Z (2015) Enhancing desalination and wastewater treatment by coupling microbial desalination cells with forward osmosis. Chem Eng J 270:437–443. https://doi.org/10.1016/j.cej.2015.02.059

    Article  CAS  Google Scholar 

  47. Zamanpour MK, Kariminia HR, Vosoughi M (2017) Electricity generation, desalination and microalgae cultivation in a biocathode-microbial desalination cell. J Environ Chem Eng 5(1):843–848. https://doi.org/10.1016/j.jece.2016.12.045

    Article  CAS  Google Scholar 

  48. Zhang B, He Z (2012) Energy production, use and saving in a bioelectrochemical desalination system. RSC Adv 2(28):10673–10679. https://doi.org/10.1039/c2ra21779a

    Article  CAS  Google Scholar 

  49. Zhang B, He Z (2013) Improving water desalination by hydraulically coupling an osmotic microbial fuel cell with a microbial desalination cell. J Membr Sci 441:18–24. https://doi.org/10.1016/j.memsci.2013.04.005

    Article  CAS  Google Scholar 

  50. Zhang F, He Z (2015) Scaling up microbial desalination cell system with a post-aerobic process for simultaneous wastewater treatment and seawater desalination. Desalination 360:28–34. https://doi.org/10.1016/j.desal.2015.01.009

    Article  CAS  Google Scholar 

  51. Zhang LL, Jia H, Wang J, Wen HT, Li J (2020) Characterization of fouling and concentration polarization in ion exchange membrane by in-situ electrochemical impedance spectroscopy. J Membr Sci 594:117443. https://doi.org/10.1016/j.memsci.2019.117443

    Article  CAS  Google Scholar 

  52. Zhang Y, Angelidaki I (2013) A new method for in situ nitrate removal from groundwater using submerged microbial desalination–denitrification cell (SMDDC). Water Res 47(5):1827–1836

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank U.S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Science and Technology (NUST) Islamabad to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Liaquat.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial and personal interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liaquat, R., Mehmood, T., Khoja, A.H. et al. Investigating the potential of locally sourced wastewater as a feedstock of microbial desalination cell (MDC) for bioenergy production. Bioprocess Biosyst Eng 44, 173–184 (2021). https://doi.org/10.1007/s00449-020-02433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02433-2

Keywords

Navigation