Skip to main content
Log in

A review on alternative bioprocesses for removal of emerging contaminants

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Emerging contaminants (ECs) include endocrine-disrupting compounds, pharmaceuticals (lipid regulators, antibiotics, diuretics, non-steroid anti-inflammatory drugs, stimulant drugs, antiseptics, analgesic, beta blockers), detergents, disinfectants, and personal care products. The residues from these compounds have become a concerning because of their bioactive presence on environmental matrices, especially water bodies. The development of technologies, aiming the secure and efficient removal of these compounds from the environment or event to remove them before they achieve the environment, is necessary. In these context, the present review is about promising eco-friendly, low-cost and specially applied, including biological processes using microalgae, bacteria, enzymes produced by fungi, and adsorbent materials such as those recycled from other processes waste. The processes where revised considering the removal mechanism and the efficiency rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Geissen V, Mol H, Klumpp E et al (2015) Emerging pollutants in the environment: A challenge for water resource management. Int Soil Water Conserv Res 3:57–65. https://doi.org/10.1016/j.iswcr.2015.03.002

    Article  Google Scholar 

  2. Tran NH, Reinhard M, Gin KY-H (2018) Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res 133:182–207. https://doi.org/10.1016/j.watres.2017.12.029

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Becerra FY, Ortiz I (2018) Biodegradation of emerging organic micropollutants in nonconventional biological wastewater treatment: a critical review. Environ Eng Sci 35:1012–1036. https://doi.org/10.1089/ees.2017.0287

    Article  CAS  Google Scholar 

  4. Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Total Environ 429:123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028

    Article  CAS  PubMed  Google Scholar 

  5. Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148:570–579. https://doi.org/10.1016/j.envpol.2006.11.035

    Article  CAS  PubMed  Google Scholar 

  6. Ji K, Kim S, Han S et al (2012) Risk assessment of chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: are the current environmental concentrations safe? Ecotoxicology 21:2031–2050. https://doi.org/10.1007/s10646-012-0956-6

    Article  CAS  PubMed  Google Scholar 

  7. Murray KE, Thomas SM, Bodour AA (2010) Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ Pollut 158:3462–3471. https://doi.org/10.1016/j.envpol.2010.08.009

    Article  CAS  PubMed  Google Scholar 

  8. Matamoros V, Uggetti E, García J, Bayona JM (2016) Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. J Hazard Mater 301:197–205. https://doi.org/10.1016/j.jhazmat.2015.08.050

    Article  CAS  PubMed  Google Scholar 

  9. Silva A, Delerue-Matos C, Figueiredo S, Freitas O (2019) The use of algae and fungi for removal of pharmaceuticals by bioremediation and biosorption processes: a review. Water 11:1555. https://doi.org/10.3390/w11081555

    Article  CAS  Google Scholar 

  10. de Godos I, Muñoz R, Guieysse B (2012) Tetracycline removal during wastewater treatment in high-rate algal ponds. J Hazard Mater 229–230:446–449. https://doi.org/10.1016/j.jhazmat.2012.05.106

    Article  CAS  PubMed  Google Scholar 

  11. Hom-Diaz A, Jaén-Gil A, Bello-Laserna I et al (2017) Performance of a microalgal photobioreactor treating toilet wastewater: pharmaceutically active compound removal and biomass harvesting. Sci Total Environ 592:1–11. https://doi.org/10.1016/j.scitotenv.2017.02.224

    Article  CAS  PubMed  Google Scholar 

  12. Zhuang L-L, Yu D, Zhang J et al (2018) The characteristics and influencing factors of the attached microalgae cultivation: a review. Renew Sustain Energy Rev 94:1110–1119. https://doi.org/10.1016/j.rser.2018.06.006

    Article  CAS  Google Scholar 

  13. Yen H-W, Hu I-C, Chen C-Y, Chang J-S (2014) Design of photobioreactors for algal cultivation. Biofuels from algae. Elsevier, Amsterdam, pp 23–45

    Chapter  Google Scholar 

  14. Chen C-Y, Yeh K-L, Aisyah R et al (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81. https://doi.org/10.1016/j.biortech.2010.06.159

    Article  CAS  PubMed  Google Scholar 

  15. Elrayies GM (2018) Microalgae: Prospects for greener future buildings. Renew Sustain Energy Rev 81:1175–1191. https://doi.org/10.1016/j.rser.2017.08.032

    Article  CAS  Google Scholar 

  16. Saavedra R, Muñoz R, Taboada ME et al (2018) Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresour Technol 263:49–57. https://doi.org/10.1016/j.biortech.2018.04.101

    Article  CAS  PubMed  Google Scholar 

  17. Xiong J-Q, Kurade MB, Patil DV et al (2017) Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater. Algal Res 25:54–61. https://doi.org/10.1016/j.algal.2017.04.012

    Article  Google Scholar 

  18. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  PubMed  Google Scholar 

  19. Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34:1225–1244. https://doi.org/10.1016/j.biotechadv.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  20. Peng F-Q, Ying G-G, Yang B et al (2014) Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): transformation kinetics and products identification. Chemosphere 95:581–588. https://doi.org/10.1016/j.chemosphere.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  21. Ding T, Yang M, Zhang J et al (2017) Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. J Hazard Mater 330:127–134. https://doi.org/10.1016/j.jhazmat.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  22. Xiong J-Q, Kurade MB, Jeon B-H (2018) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36:30–44. https://doi.org/10.1016/j.tibtech.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  23. Matamoros V, Bayona JM (2006) Elimination of pharmaceuticals and personal care products in subsurface flow constructed wetlands. Environ Sci Technol 40:5811–5816. https://doi.org/10.1021/es0607741

    Article  CAS  PubMed  Google Scholar 

  24. Santaeufemia S, Torres E, Abalde J (2018) Biosorption of ibuprofen from aqueous solution using living and dead biomass of the microalga Phaeodactylum tricornutum. J Appl Phycol 30:471–482. https://doi.org/10.1007/s10811-017-1273-5

    Article  CAS  Google Scholar 

  25. Shi W, Wang L, Rousseau DPL, Lens PNL (2010) Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems. Environ Sci Pollut Res 17:824–833. https://doi.org/10.1007/s11356-010-0301-7

    Article  CAS  Google Scholar 

  26. Maes HM, Maletz SX, Ratte HT et al (2014) Uptake, elimination, and biotransformation of 17α-ethinylestradiol by the freshwater alga Desmodesmus subspicatus. Environ Sci Technol 48:12354–12361. https://doi.org/10.1021/es503574z

    Article  CAS  PubMed  Google Scholar 

  27. Xiong J-Q, Kurade MB, Abou-Shanab RAI et al (2016) Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour Technol 205:183–190. https://doi.org/10.1016/j.biortech.2016.01.038

    Article  CAS  PubMed  Google Scholar 

  28. Xie Z, Lu G, Yan Z et al (2017) Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake. Environ Pollut 222:356–366. https://doi.org/10.1016/j.envpol.2016.12.026

    Article  CAS  PubMed  Google Scholar 

  29. Kumar MS, Kabra AN, Min B et al (2016) Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana. Environ Sci Pollut Res 23:1091–1099. https://doi.org/10.1007/s11356-015-4681-6

    Article  CAS  Google Scholar 

  30. Semblante GU, Hai FI, Huang X et al (2015) Trace organic contaminants in biosolids: Impact of conventional wastewater and sludge processing technologies and emerging alternatives. J Hazard Mater 300:1–17. https://doi.org/10.1016/j.jhazmat.2015.06.037

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Hu J, Zhu R et al (2013) Degradation of paracetamol by pure bacterial cultures and their microbial consortium. Appl Microbiol Biotechnol 97:3687–3698. https://doi.org/10.1007/s00253-012-4170-5

    Article  CAS  PubMed  Google Scholar 

  32. Combarros RG, Rosas I, Lavín AG et al (2014) Influence of biofilm on activated carbon on the adsorption and biodegradation of salicylic acid in wastewater. Water Air Soil Pollut 225:1858. https://doi.org/10.1007/s11270-013-1858-9

    Article  CAS  Google Scholar 

  33. Zhang Y, Zhou JL (2008) Occurrence and removal of endocrine disrupting chemicals in wastewater. Chemosphere 73:848–853. https://doi.org/10.1016/j.chemosphere.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  34. Grover DP, Zhou JL, Frickers PE, Readman JW (2011) Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: Impact on receiving river water. J Hazard Mater 185:1005–1011. https://doi.org/10.1016/j.jhazmat.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  35. Chapman H (2003) Removal of endocrine disruptors by tertiary treatments and constructed wetlands in subtropical Australia. Water Sci Technol 47:151–156. https://doi.org/10.2166/wst.2003.0514

    Article  CAS  PubMed  Google Scholar 

  36. Perondi T, Michelon W, Junior PR et al (2020) Advanced oxidative processes in the degradation of 17β-estradiol present on surface waters: kinetics, byproducts and ecotoxicity. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08618-2

    Article  Google Scholar 

  37. Ahmed MB, Zhou JL, Ngo HH et al (2017) Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J Hazard Mater 323:274–298. https://doi.org/10.1016/j.jhazmat.2016.04.045

    Article  CAS  PubMed  Google Scholar 

  38. Svenson A, Allard A-S, Ek M (2003) Removal of estrogenicity in Swedish municipal sewage treatment plants. Water Res 37:4433–4443. https://doi.org/10.1016/S0043-1354(03)00395-6

    Article  CAS  PubMed  Google Scholar 

  39. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res 43:363–380. https://doi.org/10.1016/j.watres.2008.10.047

    Article  CAS  PubMed  Google Scholar 

  40. Zupanc M, Kosjek T, Petkovšek M et al (2013) Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrason Sonochem 20:1104–1112. https://doi.org/10.1016/j.ultsonch.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  41. Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ et al (2013) Pharmaceuticals as emerging contaminants and their removal from water: a review. Chemosphere 93:1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059

    Article  CAS  PubMed  Google Scholar 

  42. Giger W (2009) Hydrophilic and amphiphilic water pollutants: using advanced analytical methods for classic and emerging contaminants. Anal Bioanal Chem 393:37–44. https://doi.org/10.1007/s00216-008-2481-2

    Article  CAS  PubMed  Google Scholar 

  43. Johnson AC, Sumpter JP (2001) Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environ Sci Technol 35:4697–4703. https://doi.org/10.1021/es010171j

    Article  CAS  PubMed  Google Scholar 

  44. Clarke RM, Cummins E (2015) Evaluation of “Classic” and emerging contaminants resulting from the application of biosolids to agricultural lands: a review. Hum Ecol Risk Assess An Int J 21:492–513. https://doi.org/10.1080/10807039.2014.930295

    Article  CAS  Google Scholar 

  45. Wang S, Wang J (2018) Degradation of emerging contaminants by acclimated activated sludge. Environ Technol 39:1985–1993. https://doi.org/10.1080/09593330.2017.1345989

    Article  CAS  PubMed  Google Scholar 

  46. Stasinakis AS (2012) Review on the fate of emerging contaminants during sludge anaerobic digestion. Bioresour Technol 121:432–440. https://doi.org/10.1016/j.biortech.2012.06.074

    Article  CAS  PubMed  Google Scholar 

  47. Watson MK, Tezel U, Pavlostathis SG (2012) Biotransformation of alkanoylcholines under methanogenic conditions. Water Res 46:2947–2956. https://doi.org/10.1016/j.watres.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  48. Yang S, Hai FI, Price WE et al (2016) Occurrence of trace organic contaminants in wastewater sludge and their removals by anaerobic digestion. Bioresour Technol 210:153–159. https://doi.org/10.1016/j.biortech.2015.12.080

    Article  CAS  PubMed  Google Scholar 

  49. Samaras VG, Stasinakis AS, Mamais D et al (2013) Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion. J Hazard Mater 244–245:259–267. https://doi.org/10.1016/j.jhazmat.2012.11.039

    Article  CAS  PubMed  Google Scholar 

  50. Boix C, Ibáñez M, Fabregat-Safont D et al (2016) Behaviour of emerging contaminants in sewage sludge after anaerobic digestion. Chemosphere 163:296–304. https://doi.org/10.1016/j.chemosphere.2016.07.098

    Article  CAS  PubMed  Google Scholar 

  51. Phan HV, Hai FI, Kang J et al (2014) Simultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal by an anoxic–aerobic membrane bioreactor (MBR). Bioresour Technol 165:96–104. https://doi.org/10.1016/j.biortech.2014.03.094

    Article  CAS  PubMed  Google Scholar 

  52. Suarez S, Lema JM, Omil F (2010) Removal of Pharmaceutical and Personal Care Products (PPCPs) under nitrifying and denitrifying conditions. Water Res 44:3214–3224. https://doi.org/10.1016/j.watres.2010.02.040

    Article  CAS  PubMed  Google Scholar 

  53. Reungoat J, Escher BI, Macova M et al (2012) Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Res 46:863–872. https://doi.org/10.1016/j.watres.2011.11.064

    Article  CAS  PubMed  Google Scholar 

  54. Gerrity D, Gamage S, Holady JC et al (2011) Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water Res 45:2155–2165. https://doi.org/10.1016/j.watres.2010.12.031

    Article  CAS  PubMed  Google Scholar 

  55. Kalkan Ç, Yapsakli K, Mertoglu B et al (2011) Evaluation of Biological Activated Carbon (BAC) process in wastewater treatment secondary effluent for reclamation purposes. Desalination 265:266–273. https://doi.org/10.1016/j.desal.2010.07.060

    Article  CAS  Google Scholar 

  56. Andreozzi R, Raffaele M, Nicklas P (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50:1319–1330. https://doi.org/10.1016/S0045-6535(02)00769-5

    Article  CAS  PubMed  Google Scholar 

  57. Chow C-H, Leung KS-Y (2019) Removing acesulfame with the peroxone process: Transformation products, pathways and toxicity. Chemosphere 221:647–655. https://doi.org/10.1016/j.chemosphere.2019.01.082

    Article  CAS  PubMed  Google Scholar 

  58. Bai X, Acharya K (2017) Algae-mediated removal of selected pharmaceutical and personal care products (PPCPs) from Lake Mead water. Sci Total Environ 581–582:734–740. https://doi.org/10.1016/j.scitotenv.2016.12.192

    Article  CAS  PubMed  Google Scholar 

  59. Bilal M, Adeel M, Rasheed T et al (2019) Emerging contaminants of high concern and their enzyme-assisted biodegradation: a review. Environ Int 124:336–353. https://doi.org/10.1016/j.envint.2019.01.011

    Article  CAS  PubMed  Google Scholar 

  60. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192. https://doi.org/10.1038/nrmicro2519

    Article  CAS  PubMed  Google Scholar 

  61. Touahar IE, Haroune L, Ba S et al (2014) Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Sci Total Environ 481:90–99. https://doi.org/10.1016/j.scitotenv.2014.01.132

    Article  CAS  PubMed  Google Scholar 

  62. Silva Coelho-Moreira J da, Maria G, Castoldi R et al (2013) Involvement of lignin-modifying enzymes in the degradation of herbicides. In: Herbicides. Advances in research. IntechOpen Limited, London

  63. de Wilt HA (2018) Pharmaceutical removal: synergy between biological and chemical processes for wastewater treatment. Wageningen University, Wageningen

    Google Scholar 

  64. Zdarta J, Meyer A, Jesionowski T, Pinelo M (2018) A general overview of support materials for enzyme immobilization: characteristics, properties. Practical Utility Catalysts 8:92. https://doi.org/10.3390/catal8020092

    Article  CAS  Google Scholar 

  65. Unuofin JO, Okoh AI, Nwodo UU (2019) Aptitude of oxidative enzymes for treatment of wastewater pollutants: a laccase perspective. Molecules 24:2064. https://doi.org/10.3390/molecules24112064

    Article  CAS  PubMed Central  Google Scholar 

  66. Giardina P, Faraco V, Pezzella C et al (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385. https://doi.org/10.1007/s00018-009-0169-1

    Article  CAS  PubMed  Google Scholar 

  67. Morsi R, Bilal M, Iqbal HMN, Ashraf SS (2020) Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.136572

    Article  PubMed  Google Scholar 

  68. Barrios-Estrada C, de Rostro-Alanis MJ, Parra AL et al (2018) Potentialities of active membranes with immobilized laccase for Bisphenol A degradation. Int J Biol Macromol 108:837–844. https://doi.org/10.1016/j.ijbiomac.2017.10.177

    Article  CAS  PubMed  Google Scholar 

  69. Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43:523–535. https://doi.org/10.1134/S0003683807050055

    Article  CAS  Google Scholar 

  70. Gasser CA, Ammann EM, Shahgaldian P, Corvini PF-X (2014) Laccases to take on the challenge of emerging organic contaminants in wastewater. Appl Microbiol Biotechnol 98:9931–9952. https://doi.org/10.1007/s00253-014-6177-6

    Article  CAS  PubMed  Google Scholar 

  71. Becker D, Varela Della Giustina S, Rodriguez-Mozaz S et al (2016) Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase. Degradation of compounds does not always eliminate toxicity. Bioresour Technol 219:500–509. https://doi.org/10.1016/j.biortech.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  72. Burton SG (2003) Oxidizing enzymes as biocatalysts. Trends Biotechnol 21:543–549. https://doi.org/10.1016/j.tibtech.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  73. Glenn JK, Akileswaran L, Gold MH (1986) Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696. https://doi.org/10.1016/0003-9861(86)90378-4

    Article  CAS  PubMed  Google Scholar 

  74. Oyadomari M, Shinohara H, Johjima T et al (2003) Electrochemical characterization of lignin peroxidase from the white-rot basidiomycete Phanerochaete chrysosporium. J Mol Catal B Enzym 21:291–297. https://doi.org/10.1016/S1381-1177(02)00256-4

    Article  CAS  Google Scholar 

  75. Karam J, Nicell JA (1997) Potential applications of enzymes in waste treatment. J Chem Technol Biotechnol 69:141–153. https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<141:AID-JCTB694>3.0.CO;2-U

    Article  CAS  Google Scholar 

  76. Bilal M, Rasheed T, Zhao Y et al (2018) “Smart” chemistry and its application in peroxidase immobilization using different support materials. Int J Biol Macromol 119:278–290. https://doi.org/10.1016/j.ijbiomac.2018.07.134

    Article  CAS  PubMed  Google Scholar 

  77. Tran NH, Urase T, Kusakabe O (2010) Biodegradation characteristics of pharmaceutical substances by whole fungal culture trametes versicolor and its laccase. J Water Environ Technol 8:125–140. https://doi.org/10.2965/jwet.2010.125

    Article  Google Scholar 

  78. Mir-Tutusaus JA, Parladé E, Llorca M et al (2017) Pharmaceuticals removal and microbial community assessment in a continuous fungal treatment of non-sterile real hospital wastewater after a coagulation-flocculation pretreatment. Water Res 116:65–75. https://doi.org/10.1016/j.watres.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  79. Ba S, Haroune L, Soumano L et al (2018) A hybrid bioreactor based on insolubilized tyrosinase and laccase catalysis and microfiltration membrane remove pharmaceuticals from wastewater. Chemosphere 201:749–755. https://doi.org/10.1016/j.chemosphere.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  80. Lucas D, Castellet-Rovira F, Villagrasa M et al (2018) The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. Sci Total Environ 610–611:1147–1153. https://doi.org/10.1016/j.scitotenv.2017.08.118

    Article  CAS  PubMed  Google Scholar 

  81. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28. https://doi.org/10.1002/jctb.1999

    Article  CAS  Google Scholar 

  82. Gadd G (1993) Microbial treatment of metal pollution ? A working biotechnology? Trends Biotechnol 11:353–359. https://doi.org/10.1016/0167-7799(93)90158-6

    Article  CAS  PubMed  Google Scholar 

  83. Texier A-C, Andrès Y, Le Cloirec P (1999) Selective biosorption of lanthanide (La, Eu, Yb) ions by Pseudomonas aeruginosa. Environ Sci Technol 33:489–495. https://doi.org/10.1021/es9807744

    Article  CAS  Google Scholar 

  84. Sun W, Sun W, Wang Y (2019) Biosorption of direct fast scarlet 4BS from aqueous solution using the green-tide-causing marine algae Enteromorpha prolifera. Spectrochim Acta Part A Mol Biomol Spectrosc 223:117347. https://doi.org/10.1016/j.saa.2019.117347

    Article  CAS  Google Scholar 

  85. Zulfadhly Z, Mashitah MD, Bhatia S (2001) Heavy metals removal in fixed-bed column by the macro fungus Pycnoporus sanguineus. Environ Pollut 112:463–470. https://doi.org/10.1016/S0269-7491(00)00136-6

    Article  CAS  PubMed  Google Scholar 

  86. Schiewer S, Volesky B (1995) Modeling of the proton-metal ion exchange in biosorption. Environ Sci Technol 29:3049–3058. https://doi.org/10.1021/es00012a024

    Article  CAS  PubMed  Google Scholar 

  87. Weber CT, Collazzo GC, Mazutti MA et al (2014) Removal of hazardous pharmaceutical dyes by adsorption onto papaya seeds. Water Sci Technol 70:102–107. https://doi.org/10.2166/wst.2014.200

    Article  CAS  PubMed  Google Scholar 

  88. Hlihor RM, Figueiredo H, Tavares T, Gavrilescu M (2017) Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): batch and column studies. Process Saf Environ Prot 108:44–56. https://doi.org/10.1016/j.psep.2016.06.016

    Article  CAS  Google Scholar 

  89. Podstawczyk D, Witek-Krowiak A, Dawiec A, Bhatnagar A (2015) Biosorption of copper(II) ions by flax meal: empirical modeling and process optimization by response surface methodology (RSM) and artificial neural network (ANN) simulation. Ecol Eng 83:364–379. https://doi.org/10.1016/j.ecoleng.2015.07.004

    Article  Google Scholar 

  90. Li D, Xu X, Yu H, Han X (2017) Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China. J Environ Manag 196:8–15. https://doi.org/10.1016/j.jenvman.2017.02.076

    Article  CAS  Google Scholar 

  91. Shi L, Wei D, Ngo HH et al (2015) Application of anaerobic granular sludge for competitive biosorption of methylene blue and Pb(II): fluorescence and response surface methodology. Bioresour Technol 194:297–304. https://doi.org/10.1016/j.biortech.2015.07.029

    Article  CAS  PubMed  Google Scholar 

  92. Xin S, Zeng Z, Zhou X et al (2017) Recyclable Saccharomyces cerevisiae loaded nanofibrous mats with sandwich structure constructing via bio-electrospraying for heavy metal removal. J Hazard Mater 324:365–372. https://doi.org/10.1016/j.jhazmat.2016.10.070

    Article  CAS  PubMed  Google Scholar 

  93. Lingamdinne LP, Chang Y-Y, Yang J-K et al (2017) Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem Eng J 307:74–84. https://doi.org/10.1016/j.cej.2016.08.067

    Article  CAS  Google Scholar 

  94. Saha GC, Hoque MIU, Miah MAM et al (2017) Biosorptive removal of lead from aqueous solutions onto Taro (Colocasiaesculenta(L.) Schott) as a low cost bioadsorbent: characterization, equilibria, kinetics and biosorption-mechanism studies. J Environ Chem Eng 5:2151–2162. https://doi.org/10.1016/j.jece.2017.04.013

    Article  CAS  Google Scholar 

  95. Araujo LA, Bezerra CO, Cusioli LF et al (2018) Moringa oleifera biomass residue for the removal of pharmaceuticals from water. J Environ Chem Eng 6:7192–7199. https://doi.org/10.1016/j.jece.2018.11.016

    Article  CAS  Google Scholar 

  96. Dubey SP, Dwivedi AD, Sillanpää M, Gopal K (2010) Artemisia vulgaris-derived mesoporous honeycomb-shaped activated carbon for ibuprofen adsorption. Chem Eng J 165:537–544. https://doi.org/10.1016/j.cej.2010.09.068

    Article  CAS  Google Scholar 

  97. Baccar R, Sarrà M, Bouzid J et al (2012) Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chem Eng J 211–212:310–317. https://doi.org/10.1016/j.cej.2012.09.099

    Article  CAS  Google Scholar 

  98. Antunes M, Esteves VI, Guégan R et al (2012) Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse. Chem Eng J 192:114–121. https://doi.org/10.1016/j.cej.2012.03.062

    Article  CAS  Google Scholar 

  99. Dubey SP, Dwivedi AD, Lee C et al (2014) Raspberry derived mesoporous carbon-tubules and fixed-bed adsorption of pharmaceutical drugs. J Ind Eng Chem 20:1126–1132. https://doi.org/10.1016/j.jiec.2013.06.051

    Article  CAS  Google Scholar 

  100. Al-Maqdi KAA (2017) Comparative degradation of emerging pollutants using chemical and enzymatic approaches. United Arab Emirates University, Asharij

    Google Scholar 

  101. Marques CT, Golunski SM, Venturin B et al (2017) Removal of a red dye using noncommercial peroxidase extracted from rice bran. Environ Qual Manag 27:25–31. https://doi.org/10.1002/tqem.21522

    Article  Google Scholar 

  102. Stadlmair LF, Letzel T, Graßmann J (2018) Monitoring enzymatic degradation of emerging contaminants using a chip-based robotic nano-ESI-MS tool. Anal Bioanal Chem 410:27–32. https://doi.org/10.1007/s00216-017-0729-4

    Article  CAS  PubMed  Google Scholar 

  103. Żur J, Piński A, Marchlewicz A et al (2018) Organic micropollutants paracetamol and ibuprofen—toxicity, biodegradation, and genetic background of their utilization by bacteria. Environ Sci Pollut Res 25:21498–21524. https://doi.org/10.1007/s11356-018-2517-x

    Article  CAS  Google Scholar 

  104. Barrios-Estrada C, de Jesús R-A, Muñoz-Gutiérrez BD et al (2018) Emergent contaminants: endocrine disruptors and their laccase-assisted degradation: a review. Sci Total Environ 612:1516–1531. https://doi.org/10.1016/j.scitotenv.2017.09.013

    Article  CAS  PubMed  Google Scholar 

  105. Bilal M, Iqbal HMN, Barceló D (2019) Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.133896

    Article  PubMed  Google Scholar 

  106. Wang S, Wang X, Poon K et al (2013) Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa. Chemosphere 92:1498–1505. https://doi.org/10.1016/j.chemosphere.2013.03.067

    Article  CAS  PubMed  Google Scholar 

  107. Chen J, Zheng F, Guo R (2015) Algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to treat the antibiotic cefradine. PLoS ONE 10:e0133273. https://doi.org/10.1371/journal.pone.0133273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Escapa C, Coimbra RN, Paniagua S et al (2015) Nutrients and pharmaceuticals removal from wastewater by culture and harvesting of Chlorella sorokiniana. Bioresour Technol 185:276–284. https://doi.org/10.1016/j.biortech.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  109. de Wilt A, Butkovskyi A, Tuantet K et al (2016) Micropollutant removal in an algal treatment system fed with source separated wastewater streams. J Hazard Mater 304:84–92. https://doi.org/10.1016/j.jhazmat.2015.10.033

    Article  CAS  PubMed  Google Scholar 

  110. Navarro AE, Lim H, Chang E et al (2014) Uptake of sulfa drugs from aqueous solutions by marine algae. Sep Sci Technol 49:2175–2181. https://doi.org/10.1080/01496395.2014.926930

    Article  CAS  Google Scholar 

  111. Gentili FG, Fick J (2017) Algal cultivation in urban wastewater: an efficient way to reduce pharmaceutical pollutants. J Appl Phycol 29:255–262. https://doi.org/10.1007/s10811-016-0950-0

    Article  CAS  PubMed  Google Scholar 

  112. Zhou G-J, Ying G-G, Liu S et al (2014) Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environ Sci Process Impacts 16:2018. https://doi.org/10.1039/C4EM00094C

    Article  CAS  PubMed  Google Scholar 

  113. Lai KM, Scrimshaw MD, Lester JN (2002) Biotransformation and bioconcentration of steroid estrogens by Chlorella vulgaris. Appl Environ Microbiol 68:859–864. https://doi.org/10.1128/AEM.68.2.859-864.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Della Greca M, Pinto G, Pistillo P et al (2008) Biotransformation of ethinylestradiol by microalgae. Chemosphere 70:2047–2053. https://doi.org/10.1016/j.chemosphere.2007.09.011

    Article  CAS  PubMed  Google Scholar 

  115. Hom-Diaz A, Llorca M, Rodríguez-Mozaz S et al (2015) Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. J Environ Manag 155:106–113. https://doi.org/10.1016/j.jenvman.2015.03.003

    Article  CAS  Google Scholar 

  116. Ghobadi Nejad Z, Borghei SM, Yaghmaei S (2019) Kinetic studies of Bisphenol A in aqueous solutions by enzymatic treatment. Int J Environ Sci Technol 16:821–832. https://doi.org/10.1007/s13762-018-1654-6

    Article  CAS  Google Scholar 

  117. Chang B-V, Fan S-N, Tsai Y-C et al (2018) Removal of emerging contaminants using spent mushroom compost. Sci Total Environ 634:922–933. https://doi.org/10.1016/j.scitotenv.2018.03.366

    Article  CAS  PubMed  Google Scholar 

  118. Lassouane F, Aït-Amar H, Amrani S, Rodriguez-Couto S (2019) A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions. Bioresour Technol 271:360–367. https://doi.org/10.1016/j.biortech.2018.09.129

    Article  CAS  PubMed  Google Scholar 

  119. García-Morales R, García-García A, Orona-Navar C et al (2018) Biotransformation of emerging pollutants in groundwater by laccase from P. sanguineus CS43 immobilized onto titania nanoparticles. J Environ Chem Eng 6:710–717. https://doi.org/10.1016/j.jece.2017.12.006

    Article  CAS  Google Scholar 

  120. Abdollahi K, Yazdani F, Panahi R (2017) Covalent immobilization of tyrosinase onto cyanuric chloride crosslinked amine-functionalized superparamagnetic nanoparticles: synthesis and characterization of the recyclable nanobiocatalyst. Int J Biol Macromol 94:396–405. https://doi.org/10.1016/j.ijbiomac.2016.10.058

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Treichel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viancelli, A., Michelon, W., Rogovski, P. et al. A review on alternative bioprocesses for removal of emerging contaminants. Bioprocess Biosyst Eng 43, 2117–2129 (2020). https://doi.org/10.1007/s00449-020-02410-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02410-9

Keywords

Navigation