Skip to main content

Advertisement

Log in

Precise engineering of neutrophil membrane coated with polymeric nanoparticles concurrently absorbing of proinflammatory cytokines and endotoxins for management of sepsis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Sepsis, ensuing from unrestrained inflammatory replies to bacterial infections, endures with high injury and mortality worldwide. Presently, active sepsis management is missing in the hospitals during the surgery, and maintenance remnants mainly helpful. Now, we have constructed the macrophage bio-mimic nanoparticles for the treatment of sepsis and its management. Biomimetic macrophage nanoparticles containing a recyclable polymeric nanoparticle covered with cellular membrane resulting from macrophages (represented PEG-Mac@NPs) have an antigenic external similar to the cells. The PEG-Mac@NPs, Isorhamnetin (Iso) on the free LPS encouraged endotoxin in BALB/c mice through evaluating the nitric acid, TNF-α, and IL-6. Further, the COX-2 and iNOS expression ratio was examined to recognize the connection of several trails to find the exact mode of action PEG-Mac@NPs and Iso. The outcome reveals that the PEG-Mac@NPs inhibited and LPS triggered the NO production though the macrophages peritoneal. Furthermore, the anti-inflammatory possessions were additionally categorized through the reduction of COX-2 and iNOS protein expressions. Engaging PEG-Mac@NPs as a biomimetic decontamination approach displays potential for refining sepsis patient consequences, possibly in the use of sepsis management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dodd RL, Archambault ME (2019) Preventing kidney injury by avoiding fluid overload in patients with sepsis. JAAPA Off J Am Acad Phys Assist 32:40–45. https://doi.org/10.1097/01.jaa.0000604904.81228.18

    Article  Google Scholar 

  2. Park EJ, Appiah MG, Myint PK, Gaowa A, Kawamoto E, Shimaoka M (2019) Exosomes in sepsis and inflammatory tissue injury. Curr Pharm Des. https://doi.org/10.2174/1381612825666191116125525

    Article  PubMed  Google Scholar 

  3. Lewis JM, Abouyannis M, Katha G, Nyirenda M, Chatsika G, Feasey NA, Rylance J (2019) Population incidence and mortality of sepsis in an urban African setting 2013–2016, clinical infectious diseases. Off Publ Infect Dis Soc Am. https://doi.org/10.1093/cid/ciz1119

    Article  Google Scholar 

  4. Shubin NJ, Navalkar K, Sampson D, Yager TD, Cermelli S, Seldon T, Sullivan E, Zimmerman JJ, Permut LC, Piliponsky AM (2019) Serum protein changes in pediatric sepsis patients identified with an aptamer-based multiplexed proteomic approach. Crit Care Med. https://doi.org/10.1097/ccm.0000000000004083

    Article  Google Scholar 

  5. Greer O, Shah NM, Sriskandan S, Johnson MR (2019) Sepsis: precision-based medicine for pregnancy and the puerperium. Intern J Mol Sci 20:5388. https://doi.org/10.3390/ijms20215388

    Article  CAS  Google Scholar 

  6. Duckworth RL (2016) Pediatric Sepsis: A killer worldwide and at home. JEMS J Emerg Med Serv 41:54–59 (http://europepmc.org/abstract/MED/29182262)

    Google Scholar 

  7. Weiss SL, Nicolson SC, Naim MY (2019) Clinical update in pediatric sepsis: focus on children with pre-existing heart disease. J Cardiothorac Vasc Anesth. https://doi.org/10.1053/j.jvca.2019.10.029

    Article  PubMed  Google Scholar 

  8. Salman O, Procter SR, McGregor C, Paul P, Hutubessy R, Lawn JE, Jit M (2019) systematic review on the acute cost-of-illness of sepsis and meningitis in neonates and infants. Pediatr Infect Dis J. https://doi.org/10.1097/inf.0000000000002500

    Article  Google Scholar 

  9. Tattoli L, Dell’Erba A, Ferorelli D, Gasbarro A, Solarino B (2019) Sepsis and nosocomial infections: the role of medico-legal experts in Italy. Antibiotics (Basel, Switzerland) 8:199. https://doi.org/10.3390/antibiotics8040199

    Article  CAS  Google Scholar 

  10. Ruan D, Liu W, Shi Y, Tan M, Yang L, Wang Z, Zhou Y, Wang R (2019) Protective effects of aqueous extract of radix isatidis on lipopolysaccharide-induced sepsis in C57BL/6J mice. J Med Food. https://doi.org/10.1089/jmf.2019.4476

    Article  PubMed  Google Scholar 

  11. Gnoni A, De Nitto E, Scacco S, Santacroce L, Palese LL (2019) A new look at the structures of old sepsis actors by exploratory data analysis tools. Antibiotics (Basel, Switzerland). 8:225. https://doi.org/10.3390/antibiotics8040225

    Article  PubMed Central  CAS  Google Scholar 

  12. Ali A, Lamont R (2019) Recent advances in the diagnosis and management of sepsis in pregnancy. F1000 Res 8:F1000. https://doi.org/10.12688/f1000research.18736.1

    Article  CAS  Google Scholar 

  13. Riedel S (2019) Predicting bacterial versus viral infection, or none of the above: current and future prospects of biomarkers. Clin Lab Med 39:453–472. https://doi.org/10.1016/j.cll.2019.05.011

    Article  PubMed  Google Scholar 

  14. Kerchberger VE, Bastarache JA, Shaver CM, Nagata H, McNeil JB, Landstreet SR, Putz ND, Yu W-K, Jesse J, Wickersham NE, Sidorova TN, Janz DR, Parikh CR, Siew ED, Ware LB (2019) Haptoglobin-2 variant increases susceptibility to acute respiratory distress syndrome during sepsis. JCI Insight 4(21):131206. https://doi.org/10.1172/jci.insight.131206

    Article  PubMed  Google Scholar 

  15. Yang Y-I, Woo J-H, Seo Y-J, Lee K-T, Lim Y, Choi J-H (2016) Protective Effect of brown alga phlorotannins against hyper-inflammatory responses in lipopolysaccharide-induced sepsis models. J Agri Food Chem 64:570–578. https://doi.org/10.1021/acs.jafc.5b04482

    Article  CAS  Google Scholar 

  16. Min J, Nothing M, Coble B, Zheng H, Park J, Im H, Weber GF, Castro CM, Swirski FK, Weissleder R, Lee H (2018) Integrated biosensor for rapid and point-of-care sepsis diagnosis. ACS Nano 12:3378–3384. https://doi.org/10.1021/acsnano.7b08965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cao Z, Yende S, Kellum JA, Angus DC, Robinson RAS (2014) Proteomics reveals age-related differences in the host immune response to sepsis. J Proteome Res 13:422–432. https://doi.org/10.1021/pr400814s

    Article  PubMed  CAS  Google Scholar 

  18. Zhang J, Tao J, Ling Y, Li F, Zhu X, Xu L, Wang M, Zhang S, McCall CE, Liu TF (2019) Switch of NAD salvage to de novo biosynthesis sustains SIRT1-RelB-dependent inflammatory tolerance. Front Immunol 10:2358. https://doi.org/10.3389/fimmu.2019.02358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Brown GC (2019) The endotoxin hypothesis of neurodegeneration. J Neuroinflam 16:180. https://doi.org/10.1186/s12974-019-1564-7

    Article  CAS  Google Scholar 

  20. Liu Y, Veach RA, Zienkiewicz J, Boyd KL, Smith TE, Xu Z-Q, Wylezinski LS, Hawiger J (2019) Protection from endotoxin shock by selective targeting of proinflammatory signaling to the nucleus mediated by importin alpha 5. Immuno Horizons 3:440–446. https://doi.org/10.4049/immunohorizons.1900064

    Article  CAS  Google Scholar 

  21. Chaung WW, Brenner M, Yen H-T, Ochani ML, Jacob A, Wang P (2019) Recombinant human milk fat globule-EGF factor VIII (rhMFG-E8) as a therapy for sepsis after acute exposure to alcohol. Mol Med (Cambridge, Mass) 25:52. https://doi.org/10.1186/s10020-019-0118-x

    Article  CAS  Google Scholar 

  22. Lorente-Sorolla C, Garcia-Gomez A, Català-Moll F, Toledano V, Ciudad L, Avendaño-Ortiz J, Maroun-Eid C, Martín-Quirós A, Martínez-Gallo M, Ruiz-Sanmartín A, Del Campo ÁG, Ferrer-Roca R, Ruiz-Rodriguez JC, Álvarez-Errico D, López-Collazo E, Ballestar E (2019) Inflammatory cytokines and organ dysfunction associate with the aberrant DNA methylome of monocytes in sepsis. Genom Med 11:66. https://doi.org/10.1186/s13073-019-0674-2

    Article  CAS  Google Scholar 

  23. Levashov PA, Matolygina DA, Dmitrieva OA, Ovchinnikova ED, Adamova IY, Karelina NV, Nelyub VA, Eremeev NL, Levashov AV (2019) Covalently immobilized chemically modified lysozyme as a sorbent for bacterial endotoxins (lipopolysaccharides). Biotechnol Rep 24:e00381. https://doi.org/10.1016/j.btre.2019.e00381

    Article  Google Scholar 

  24. Allen RC, Henery ML, Allen JC, Hawks RJ, Stephens JT (2019) Myeloperoxidase and eosinophil peroxidase inhibit endotoxin activity and increase mouse survival in a lipopolysaccharide lethal dose 90% model. J Immunol Res 2019:4783018. https://doi.org/10.1155/2019/4783018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhang X, Liu D, Wang Y, Yan J, Yang X (2019) Clinical significance on serum intestinal fatty acid binding protein and d-lactic acid levels in early intestinal injury of patients with sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 31:545–550. https://doi.org/10.3760/cma.j.issn.2095-4352.2019.05.005

    Article  PubMed  Google Scholar 

  26. Doswald S, Stark WJ, Beck-Schimmer B (2019) Biochemical functionality of magnetic particles as nanosensors: how far away are we to implement them into clinical practice? J Nanobiotechnol 17:73. https://doi.org/10.1186/s12951-019-0506-y

    Article  Google Scholar 

  27. Yan H, Shao D, Lao Y-H, Li M, Hu H, Leong KW (2019) engineering cell membrane-based nanotherapeutics to target inflammation. Adv Sci (Weinheim, Baden-Wurttemberg, Germany) 6:1900605. https://doi.org/10.1002/advs.201900605

    Article  PubMed Central  CAS  Google Scholar 

  28. Fang RH, Kroll AV, Gao W, Zhang L (2018) Cell membrane coating nanotechnology. Adv Mat (Deerfield Beach, Fla.) 30:e1706759. https://doi.org/10.1002/adma.201706759

    Article  CAS  Google Scholar 

  29. Gupta P, Thompson BL, Wahlang B, Jordan CT, Zach Hilt J, Hennig B, Dziubla T (2018) The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics. Drug Deliv Transl Res 8:740–759. https://doi.org/10.1007/s13346-017-0429-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fang RH, Jiang Y, Fang JC, Zhang L (2017) Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 128:69–83. https://doi.org/10.1016/j.biomaterials.2017.02.041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Carmona-Ribeiro AM, de Melo Carrasco LD (2014) Novel formulations for antimicrobial peptides. Intern J Mol Sci 15:18040–18083. https://doi.org/10.3390/ijms151018040

    Article  CAS  Google Scholar 

  32. Howard MD, Hood ED, Zern B, Shuvaev VV, Grosser T, Muzykantov VR (2014) Nanocarriers for vascular delivery of anti-inflammatory agents. Annu Rev Pharmacol Toxicol 54:205–226. https://doi.org/10.1146/annurev-pharmtox-011613-140002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ge L, Hu Q, Chen J, Shi M, Yang H, Zhu G (2017) Inhibition of TNF-α sepsis of lipopolysaccharide induction using nano cerium oxide system. Mater Sci Eng C Mater Biol Appl 77:405–410. https://doi.org/10.1016/j.msec.2017.03.207

    Article  PubMed  CAS  Google Scholar 

  34. Shimada T, Topchiy E, Leung AKK, Kong HJ, Genga KR, Boyd JH, Russell JA, Oda S, Nakada T-A, Hirasawa H, Walley KR (2019) Very low density lipoprotein receptor sequesters lipopolysaccharide into adipose tissue during sepsis. Crit Care Med. https://doi.org/10.1097/ccm.0000000000004064

    Article  Google Scholar 

  35. Damme NM, Fernandez DP, Wang L-M, Wu Q, Kirk RA, Towner RA, McNally JS, Hoffman JM, Morton KA (2019) Analysis of retention of gadolinium by brain, bone, and blood following linear gadolinium-based contrast agent administration in rats with experimental sepsis. Magn Reson Med. https://doi.org/10.1002/mrm.28060

    Article  PubMed  Google Scholar 

  36. Mog B, Asase C, Chaplin A, Gao H, Rajagopalan S, Maiseyeu A (2019) Nano-antagonist alleviates inflammation and allows for MRI of atherosclerosis. Nanotheranostics 3:342–355. https://doi.org/10.7150/ntno.37391

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee H-R, Shin S-H, Kim JH, Sohn K-Y, Yoon SY, Kim JW (2019) 1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) rapidly resolves LPS-induced acute lung injury through the effective control of neutrophil recruitment. Front Immunol 10:2177. https://doi.org/10.3389/fimmu.2019.02177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gannavaram S, Bhattacharya P, Siddiqui A, Ismail N, Madhavan S, Nakhasi HL (2019) miR-21 expression determines the early vaccine immunity induced by LdCen−/− immunization. Front Immunol 10:2273. https://doi.org/10.3389/fimmu.2019.02273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lee SK, Kim YS, Bae GH, Lee HY, Bae Y-S (2019) VU0155069 inhibits inflammasome activation independent of phospholipase D1 activity. Scientif Rep 9:14349. https://doi.org/10.1038/s41598-019-50806-9

    Article  CAS  Google Scholar 

  40. Sharma R, Rahi S, Mehan S (2019) Neuroprotective potential of solanesol in intracerebroventricular propionic acid induced experimental model of autism: Insights from behavioral and biochemical evidence. Toxicol Rep 6:1164–1175. https://doi.org/10.1016/j.toxrep.2019.10.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kasztelan-Szczerbinska B, Cichoz-Lach H (2019) Refractory ascites—the contemporary view on pathogenesis and therapy. PeerJ 7:e7855. https://doi.org/10.7717/peerj.7855

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhou Z, Kandhare AD, Kandhare AA, Bodhankar SL (2019) Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways. EXCLI J 18:723–745. https://doi.org/10.17179/excli2019-1094

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kumova OK, Fike AJ, Thayer JL, Nguyen LT, Mell JC, Pascasio J, Stairiker C, Leon LG, Katsikis PD, Carey AJ (2019) Lung transcriptional unresponsiveness and loss of early influenza virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG. PLoS Pathog 15:e1008072. https://doi.org/10.1371/journal.ppat.1008072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gold JA, Parsey M, Hoshino Y, Hoshino S, Nolan A, Yee H, Tse DB, Weiden MD (2003) CD40 contributes to lethality in acute sepsis: in vivo role for CD40 in innate immunity. Infect Immun 71:3521–3528. https://doi.org/10.1128/IAI.71.6.3521-3528.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Normand S, Waldschmitt N, Neerincx A, Martinez-Torres RJ, Chauvin C, Couturier-Maillard A, Boulard O, Cobret L, Awad F, Huot L, Ribeiro-Ribeiro A, Lautz K, Ruez R, Delacre M, Bondu C, Guilliams M, Scott C, Segal A, Amselem S, Hot D, Karabina S, Bohn E, Ryffel B, Poulin LF, Kufer TA, Chamaillard M (2018) Proteasomal degradation of NOD2 by NLRP12 in monocytes promotes bacterial tolerance and colonization by enteropathogens. Nat Commun 9:5338. https://doi.org/10.1038/s41467-018-07750-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR (2018) Unintended effects of drug carriers: big issues of small particles. Adv Drug Deliv Rev 130:90–112. https://doi.org/10.1016/j.addr.2018.06.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Farías JG, Molina VM, Carrasco RA, Zepeda AB, Figueroa E, Letelier P, Castillo RL (2017) Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients. 9:966. https://doi.org/10.3390/nu9090966

    Article  PubMed Central  CAS  Google Scholar 

  48. Wu Q, Xu X, Ren J, Liu S, Liao X, Wu X, Hu D, Wang G, Gu G, Kang Y, Li J (2017) Association between the −159C/T polymorphism in the promoter region of the CD14 gene and sepsis: a meta-analysis. BMC Anesthesiol 17:11. https://doi.org/10.1186/s12871-017-0303-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by Wenzhou Science and Technology Project (No. Y20170755).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Lin, L., Zhou, F. et al. Precise engineering of neutrophil membrane coated with polymeric nanoparticles concurrently absorbing of proinflammatory cytokines and endotoxins for management of sepsis. Bioprocess Biosyst Eng 43, 2065–2074 (2020). https://doi.org/10.1007/s00449-020-02395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02395-5

Keywords

Navigation