Skip to main content

Advertisement

Log in

Controlling methane and hydrogen production from cheese whey in an EGSB reactor by changing the HRT

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study assessed the effects of hydraulic retention time (HRT; 8 h–0.25 h) on simultaneous hydrogen and methane production from cheese whey (5000 mg carbohydrates/L) in a mesophilic (30 °C) expanded granular sludge bed (EGSB) reactor. Methane production was observed at HRTs from 4 to 0.25 h. The maximum methane yield (9.8 ± 1.9 mL CH4/g CODap, reported as milliliter CH4 per gram of COD applied) and methane production rate (461 ± 75 mL CH4/day Lreactor) occurred at HRTs of 4 h and 2 h, respectively. Hydrogen production increased as methane production decreased with decreasing HRT from 8 to 0.25 h. The maximum hydrogen yield of 3.2 ± 0.3 mL H2/g CODap (reported as mL H2 per gram of COD applied) and hydrogen production rate of 1951 ± 171 mL H2/day Lreactor were observed at the HRT of 0.25 h. The decrease in HRT from 8 to 0.25 h caused larger changes in the bacterial populations than the archaea populations. With the decrease in HRT (6 h–0.25 h), the Shannon diversity index decreased (3.02–2.87) for bacteria and increased (1.49–1.83) for archaea. The bacterial dominance increased (0.059–0.066) as the archaea dominance decreased (0.292–0.201) with the HRT decrease from 6 to 0.25 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Z, Zhang C, Lu Y, Wu X, Wang L, Wang L, Han B, Xing XH (2013) States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresour Technol 135:292–303

    Article  CAS  PubMed  Google Scholar 

  2. Show KY, Lee DJ, Tay JH, Lin CY, Chang JS (2012) Biohydrogen production: current perspectives and the way forward. Int J Hydrogen Energy 37:15616–15631

    Article  CAS  Google Scholar 

  3. Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445:385–396

    Article  CAS  PubMed  Google Scholar 

  4. Ottaviano LM, Ramos LR, Botta LS, Varesche MBA, Silva EL (2017) Continuous thermophilic hydrogen production from cheese whey powder solution in an anaerobic fluidized bed reactor: Effect of hydraulic retention time and initial substrate concentration. Int J Hydrogen Energy 42:4848–4860

    Article  CAS  Google Scholar 

  5. Dareioti MA, Kornaros M (2015) Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: effect of hydraulic retention time. Bioresour Technol 175:553–562

    Article  CAS  PubMed  Google Scholar 

  6. Dareioti MA, Kornaros M (2014) Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system. Bioresour Technol 167:407–415

    Article  CAS  PubMed  Google Scholar 

  7. Lopes HJS, Ramos LR, Silva EL (2017) Co-fermentation of cheese whey and crude glycerol in EGSB reactor as a strategy to enhance continuous hydrogen and propionic acid production. Appl Biochem Biotechnol 183:712–728

    Article  CAS  PubMed  Google Scholar 

  8. Ramos LR, Silva EL (2017) Improving EGSB reactor performance for simultaneous bioenergy and organic acid production from cheese whey via continuous biological H2 production. Biotechnol Lett 39:983–991

    Article  CAS  PubMed  Google Scholar 

  9. Huang W, Wang Z, Zhou Y, Ng WJ (2015) The role of hydrogenotrophic methanogens in an acidogenic reactor. Chemosphere 140:40–46

    Article  CAS  PubMed  Google Scholar 

  10. American Public Health Association (2012) Standard methods for the examination for water and wastewater, 22nd edn. American Water Works Association, Water Environmental Federation, Washington

    Google Scholar 

  11. Rosa PRF, Santos SC, Sakamoto IK, Varesche MBA, Silva EL (2014) Hydrogen production from cheese whey with ethanol-type fermentation: Effect of hydraulic retention time on the microbial community composition. Bioresour Technol 161:10–19

    Article  CAS  PubMed  Google Scholar 

  12. Kim S, Han S, Shin H (2006) Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Proc Biochem 41:199–207

    Article  CAS  Google Scholar 

  13. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  14. Walker M, Zhang Y, Heaven S, Banks C (2009) Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour Technol 100:6339–6346

    Article  CAS  PubMed  Google Scholar 

  15. Penteado ED, Lazaro CZ, Sakamoto IK, Zaiat M (2013) Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. Int J Hydrogen Energy 38:6137–6145

    Article  CAS  Google Scholar 

  16. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNA in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kudo Y, Nakajima T, Miyaki T, Oyaizu H (1997) Methanogen flora of paddy soils in Japan. FEMS Microbiol Ecol 22:39–48

    Article  CAS  Google Scholar 

  19. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Perna V, Castelló E, Wenzel J, Zampol C, Fontes Lima DM, Borzacconi L, Varesche MB, Zaiat M, Etchebehere C (2013) Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey. Int J Hydrogen Energy 38:54–62

    Article  CAS  Google Scholar 

  21. Okada DY, Esteves AS, Delforno TP, Hirasawa JS, Duarte ICS, Varesche MBA (2013) Influence of co-substrates in the anaerobic degradation of an anionic surfactant. Braz J Chem Eng 30:499–506

    Article  CAS  Google Scholar 

  22. Wu WM, Jain MK, Macario EC, Thiele JH, Zeikus JG (1992) Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules. Appl Microbiol Biotechnol 38:282–290

    Article  CAS  Google Scholar 

  23. Schmidt JE, Ahring BK (1996) Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 49:229–246

    Article  CAS  PubMed  Google Scholar 

  24. Castelló E, García y Santos C, Iglesias T, Paolino G, Wenzel J, Borzacconi L, Etchebehere C (2009) Feasibility of biohydrogen production from cheese whey using a UASB reactor: links between microbial community and reactor performance. Int J Hydrogen Energy 34:5674–5682

    Article  CAS  Google Scholar 

  25. Vrieze JD, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9

    Article  CAS  PubMed  Google Scholar 

  26. Pasupuleti SB, Mohan SV (2015) Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash. Bioresour Technol 189:177–185

    Article  CAS  PubMed  Google Scholar 

  27. Montecchio D, Yuan Y, Malpei F (2018) Hydrogen production dynamic during cheese whey dark fermentation: new insights from modelization. Int J Hydrogen Energy 43:17588–17601

    Article  CAS  Google Scholar 

  28. Farghaly A, Tawfik A (2017) Simultaneous hydrogen and methane production through multi-phase anaerobic digestion of paperboard mill wastewater under different operating conditions. Appl Biochem Biotechnol 181:142–156

    Article  CAS  PubMed  Google Scholar 

  29. Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M, Lyberatos G (2009) Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol 100:3713–3717

    Article  CAS  PubMed  Google Scholar 

  30. Davila-Vazquez G, Cota-Navarro CB, Rosales-Colunga LM, León-Rodríguez A, Razo-Flores E (2009) Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate. Int J Hydrogen Energy 34:4296–4304

    Article  CAS  Google Scholar 

  31. Ramos LR, Silva EL (2017) Continuous hydrogen production from agricultural wastewaters at thermophilic and hyperthermophilic temperatures. Appl Biochem Biotechnol 182:846–869

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Zhang Y, Wang J, Meng L (2009) Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy 33:848–853

    Article  CAS  Google Scholar 

  33. Mamimin C, Prasertsan P, Kongjan P, O-Thong S (2017) Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition. Electron J Biotechnol 29:78–85

    Article  CAS  Google Scholar 

  34. Yang P, Zhang R, McGarvey JA, Benemann JR (2007) Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int J Hydrogen Energy 32:4761–4771

    Article  CAS  Google Scholar 

  35. Kim TH, Lee Y, Chang KH, Hwang SJ (2012) Effects of initial lactic acid concentration, HRTs, and OLRs on bio-hydrogen production from lactate-type fermentation. Bioresour Technol 103:136–141

    Article  CAS  PubMed  Google Scholar 

  36. Fuess LT, Ferraz Júnior ADN, Machado CB, Zaiat M (2018) Temporal dynamics and metabolic correlation between lactate-producing and hydrogen-producing bacteria in sugarcane vinasse dark fermentation: the key role of lactate. Bioresour Technol 247:426–433

    Article  CAS  PubMed  Google Scholar 

  37. Rodríguez-Abalde Á, Guivernau M, Prenafeta-Boldú FX, Flotats X, Fernández B (2019) Characterization of microbial community dynamics during the anaerobic co-digestion of thermally pre-treated slaughterhouse wastes with glycerin addition. Bioprocess Biosyst Eng 42:1175–1184

    Article  CAS  PubMed  Google Scholar 

  38. Bo Z, Wei-Min C, Pin-Jing H (2007) Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes. J Environ Sci 19:244–249

    Article  Google Scholar 

  39. Colombo B, Calvo MV, Sciarria TP, Scaglia B, Kizito SS, D’Imporzano G, Adani F (2019) Biohydrogen and polyhydroxyalkanoates (PHA) as products of a two-steps bioprocess from deproteinized dairy wastes. Waste Manage 95:22–31

    Article  CAS  Google Scholar 

  40. Lovato G, Ratusznei SM, Rodrigues JAD, Zaiat M (2016) Co-digestion of whey with glycerin in an AnSBBR for biomethane production. Appl Biochem Biotechnol 178:126–143

    Article  CAS  PubMed  Google Scholar 

  41. Lovato G, Albanez R, Triveloni M, Ratusznei SM, Rodrigues JAD (2019) Methane production by co-digesting vinasse and whey in an AnSBBR: effect of mixture ratio and feed strategy. Appl Biochem Biotechnol 187:28–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil (CNPq), and Fundação de Amparo à Pesquisa do Estado de São Paulo—Brasil (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Luiz Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, L.R., de Menezes, C.A., Soares, L.A. et al. Controlling methane and hydrogen production from cheese whey in an EGSB reactor by changing the HRT. Bioprocess Biosyst Eng 43, 673–684 (2020). https://doi.org/10.1007/s00449-019-02265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02265-9

Keywords

Navigation