Skip to main content
Log in

Microbiota adaptation after an alkaline pH perturbation in a full-scale UASB anaerobic reactor treating dairy wastewater

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to understand how the microbial community adapted to changes, including a pH perturbation, occurring during the start-up and operation processes in a full-scale methanogenic UASB reactor designed to treat dairy wastewater. The reactor performance, prokaryotic community, and lipid degradation capacity were monitored over a 9-month period. The methanogenic community was studied by mcrA/mrtA gene copy-number quantification and methanogenic activity tests. A diverse prokaryotic community characterized the seeding sludge as assessed by sequencing the V4 region of the 16S rRNA gene. As the feeding began, the bacterial community was dominated by Firmicutes, Synergistetes, and Proteobacteria phyla. After an accidental pH increase that affected the microbial community structure, a sharp increase in the relative abundance of Clostridia and a decrease in the mcrA/mrtA gene copy number and methanogenic activity were observed. After a recovery period, the microbial population regained diversity and methanogenic activity. Alkaline shocks are likely to happen in dairy wastewater treatment because of the caustic soda usage. In this work, the plasticity of the prokaryotic community was key to surviving changes to the external environment and supporting biogas production in the reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

COD:

Chemical oxygen demand

EGSB:

Expanded granular sludge bed

FOG:

Fat, oil and grease

HRT:

Hydraulic retention time

LCFA:

Long-chain fatty acid

OLR:

Organic loading rate

OUT:

Operational taxonomic unit

SFDA:

Specific fatty-acid degradation activity

SLR:

Specific loading rate

SMA:

Specific methanogenic activity

SRT:

Sludge retention time

UASB:

Upflow anaerobic sludge blanket

VSS:

Volatile suspended solids

References

  1. Ramasamy EV, Gajalakshmi S, Sanjeevi R et al (2004) Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors. Bioresour Technol 93:209–212. https://doi.org/10.1016/j.biortech.2003.11.001

    Article  CAS  PubMed  Google Scholar 

  2. Karadag D, Köroʇlu OE, Ozkaya B, Cakmakci M (2015) A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochem 50:262–271. https://doi.org/10.1016/j.procbio.2014.11.005

    Article  CAS  Google Scholar 

  3. Instituto Nacional de la Leche (2019) Uruguay Lechero. https://www.inale.org/uruguay-lechero/

  4. Hemalatha M, Sravan JS, Min B, Venkata Mohan S (2019) Microalgae-biorefinery with cascading resource recovery design associated to dairy wastewater treatment. Bioresour Technol 284:424–429. https://doi.org/10.1016/j.biortech.2019.03.106

    Article  CAS  PubMed  Google Scholar 

  5. Chandra R, Castillo-Zacarias C, Delgado P, Parra-Saldívar R (2018) A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. J Clean Prod 183:1184–1196. https://doi.org/10.1016/j.jclepro.2018.02.124

    Article  CAS  Google Scholar 

  6. Hernández-Padilla F, Margni M, Noyola A et al (2017) Assessing wastewater treatment in Latin America and the Caribbean: enhancing life cycle assessment interpretation by regionalization and impact assessment sensibility. J Clean Prod 142:2140–2153. https://doi.org/10.1016/j.jclepro.2016.11.068

    Article  Google Scholar 

  7. van Lier JB, van der Zee FP, Frijters CTMJ, Ersahin ME (2015) Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev Environ Sci Biotechnol 14:681–702. https://doi.org/10.1007/s11157-015-9375-5

    Article  CAS  Google Scholar 

  8. Alves MM, Pereira MA, Sousa DZ et al (2009) Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA). Microb Biotechnol 2:538–550. https://doi.org/10.1111/j.1751-7915.2009.00100.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vidal G, Carvalho A, Mendez R, Lema JM (2000) Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresour Technol 74:231–239. https://doi.org/10.1016/S0960-8524(00)00015-8

    Article  CAS  Google Scholar 

  10. Cammarota MC, Freire DMG (2006) A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresour Technol 97:2195–2210. https://doi.org/10.1016/j.biortech.2006.02.030

    Article  CAS  PubMed  Google Scholar 

  11. Passeggi M, López I, Borzacconi L (2009) Integrated anaerobic treatment of dairy industrial wastewater and sludge. Water Sci Technol 59:501–506. https://doi.org/10.2166/wst.2009.010

    Article  CAS  PubMed  Google Scholar 

  12. Passeggi M, López I, Borzacconi L (2012) Modified UASB reactor for dairy industry wastewater: performance indicators and comparison with the traditional approach. J Clean Prod 26:90–94. https://doi.org/10.1016/j.jclepro.2011.12.022

    Article  CAS  Google Scholar 

  13. Ziels RM, Beck DAC, Stensel HD (2017) Long-chain fatty acid feeding frequency in anaerobic codigestion impacts syntrophic community structure and biokinetics. Water Res 117:218–229. https://doi.org/10.1016/j.watres.2017.03.060

    Article  CAS  PubMed  Google Scholar 

  14. Nelson MC, Morrison M, Yu Z (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol 102:3730–3739. https://doi.org/10.1016/j.biortech.2010.11.119

    Article  CAS  PubMed  Google Scholar 

  15. Werner JJ, Knights D, Garcia ML et al (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci 108:4158–4163. https://doi.org/10.1073/pnas.1015676108

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sundberg C, Al-Soud WA, Larsson M et al (2013) 454 Pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626. https://doi.org/10.1111/1574-6941.12148

    Article  CAS  PubMed  Google Scholar 

  17. Vanwonterghem I, Jensen PD, Dennis PG et al (2014) Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. ISME J 8:2015–2028. https://doi.org/10.1038/ismej.2014.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lucas R, Kuchenbuch A, Fetzer I et al (2015) Long-term monitoring reveals stable and remarkably similar microbial communities in parallel full-scale biogas reactors digesting energy crops. FEMS Microbiol Ecol 91:fiv004

    Article  PubMed  Google Scholar 

  19. Luo G, Fotidis IA, Angelidaki I (2016) Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis. Biotechnol Biofuels 9:51. https://doi.org/10.1186/s13068-016-0465-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thauer RK, Kaster A-K, Seedorf H et al (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. https://doi.org/10.1038/nrmicro1931

    Article  CAS  PubMed  Google Scholar 

  21. Lang K, Schuldes J, Klingl A et al (2015) New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl Environ Microbiol 81:1338–1352. https://doi.org/10.1128/AEM.03389-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530. https://doi.org/10.1099/00221287-148-11-3521

    Article  CAS  PubMed  Google Scholar 

  23. Traversi D, Villa S, Lorenzi E et al (2012) Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity. J Environ Manage 111:173–177. https://doi.org/10.1016/j.jenvman.2012.07.021

    Article  CAS  PubMed  Google Scholar 

  24. Morris R, Schauer-Gimenez A, Bhattad U et al (2014) Methyl coenzyme M reductase (mcrA) gene abundance correlates with activity measurements of methanogenic H2/CO2-enriched anaerobic biomass. Microb Biotechnol 7:77–84. https://doi.org/10.1111/1751-7915.12094

    Article  CAS  PubMed  Google Scholar 

  25. Fykse EM, Aarskaug T, Madslien EH, Dybwad M (2016) Microbial community structure in a full-scale anaerobic treatment plant during start-up and first year of operation revealed by high-throughput 16S rRNA gene amplicon sequencing. Bioresour Technol 222:380–387. https://doi.org/10.1016/j.biortech.2016.09.118

    Article  CAS  PubMed  Google Scholar 

  26. Goux X, Calusinska M, Fossépré M et al (2016) Start-up phase of an anaerobic full-scale farm reactor—appearance of mesophilic anaerobic conditions and establishment of the methanogenic microbial community. Bioresour Technol 212:217–226. https://doi.org/10.1016/j.biortech.2016.04.040

    Article  CAS  PubMed  Google Scholar 

  27. Zhu J, Chen L, Zhang Y, Zhu X (2017) Revealing the anaerobic acclimation of microbial community in a membrane bioreactor for coking wastewater treatment by Illumina Miseq sequencing. J Environ Sci. https://doi.org/10.1016/j.jes.2017.06.003

    Article  Google Scholar 

  28. Trego AC, Morabito C, Bourven I et al (2018) Diversity converges during community assembly in methanogenic granules, suggesting a biofilm life-cycle. bioRxiv. https://doi.org/10.1101/484642

    Article  Google Scholar 

  29. Gao WJJ, Lin HJ, Leung KT, Liao BQ (2010) Influence of elevated pH shocks on the performance of a submerged anaerobic membrane bioreactor. Process Biochem 45:1279–1287. https://doi.org/10.1016/j.procbio.2010.04.018

    Article  CAS  Google Scholar 

  30. Nadais MHGAG, Capela MIAPF, Arroja LMGA, Hung Y-T (2010) Anaerobic treatment of milk processing wastewater. In: Wang LK, Tay J-H, Tay STL, Hung Y-T (eds) Environmental bioengineering, vol 11. Humana Press, Totowa, pp 555–627

    Chapter  Google Scholar 

  31. Eaton AD, Clesceri LS, Greenberg AE, Franson MAH (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington

    Google Scholar 

  32. Soto M, Méndez R, Lema JM (1993) Methanogenic and non-methanogenic activity tests. Theoretical basis and experimental set up. Water Res 27:1361–1376. https://doi.org/10.1016/0043-1354(93)90224-6

    Article  CAS  Google Scholar 

  33. Fernández A (2016) Puesta en marcha de un ractor UASB para el tratamiento de efluente lácteo. Evaluación de desmpeño del reactor yadaptación del inóculo. (Master thesis). Universidad de la República

  34. Claesson MJ, O’Sullivan O, Wang Q et al (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE. https://doi.org/10.1371/journal.pone.0006669

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bolyen E, Rideout JR, Dillon MR et al (2018) QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Peer J Prepr 6:e27295v2. https://doi.org/10.7287/peerj.preprints.27295v2

    Article  Google Scholar 

  36. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE 5:1–10. https://doi.org/10.1371/journal.pone.0009490

    Article  CAS  Google Scholar 

  39. Lozupone C, Lladser ME, Knights D et al (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172. https://doi.org/10.1038/ismej.2010.133

    Article  PubMed  Google Scholar 

  40. Bokulich NA, Rideout JR, Mercurio WG et al (2016) mockrobiota: a public resource for microbiome bioinformatics benchmarking. mSystems 1:e00062–162. https://doi.org/10.1128/mSystems.00062-16

    Article  PubMed  PubMed Central  Google Scholar 

  41. Quast C (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. https://doi.org/10.1093/nar/gks1219

    Article  PubMed  PubMed Central  Google Scholar 

  42. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  43. Denman SE, Tomkins NW, McSweeney CS (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 62:313–322. https://doi.org/10.1111/j.1574-6941.2007.00394.x

    Article  CAS  PubMed  Google Scholar 

  44. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  45. Borja R, Banks CJ (1995) Response of an anaerobic fluidized bed reactor treating ice-cream wastewater to organic, hydraulic, temperature and pH shocks. J Biotechnol 39:251–259. https://doi.org/10.1016/0168-1656(95)00021-H

    Article  CAS  Google Scholar 

  46. Goux X, Calusinska M, Lemaigre S et al (2015) Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery. Biotechnol Biofuels 8:122. https://doi.org/10.1186/s13068-015-0309-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rinke C, Schwientek P, Sczyrba A et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437. https://doi.org/10.1038/nature12352

    Article  CAS  PubMed  Google Scholar 

  48. Youssef NH, Couger MB, McCully AL et al (2015) Assessing the global phylum level diversity within the bacterial domain: a review. J Adv Res 6:269–282. https://doi.org/10.1016/j.jare.2014.10.005

    Article  PubMed  Google Scholar 

  49. Ito T, Yoshiguchi K, Ariesyady HD, Okabe S (2011) Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge. ISME J 5:1844–1856. https://doi.org/10.1038/ismej.2011.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Whiteley AS, Jenkins S, Waite I et al (2012) Microbial 16S rRNA ion tag and community metagenome sequencing using the Ion Torrent (PGM) Platform. J Microbiol Methods 91:80–88. https://doi.org/10.1016/j.mimet.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  51. Jumas-bilak E, Pathoge E, Re CH et al (2014) The prokaryotes. Springer, Heidelberg

    Google Scholar 

  52. Militon C, Hamdi O, Michotey V et al (2015) Ecological significance of synergistetes in the biological treatment of tuna cooking wastewater by an anaerobic sequencing batch reactor. Environ Sci Pollut Res 22:18230–18238. https://doi.org/10.1007/s11356-015-4973-x

    Article  CAS  Google Scholar 

  53. Ganesan A, Chaussonnerie S, Tarrade A et al (2008) Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum “Synergistetes”, isolated from an anaerobic sludge digester. Int J Syst Evol Microbiol 58:2003–2012. https://doi.org/10.1099/ijs.0.65645-0

    Article  CAS  PubMed  Google Scholar 

  54. Díaz C, Baena S, Patel BKC, Fardeau ML (2010) Peptidolytic microbial community of methanogenic reactors from two modified uasbs of brewery industries. Br J Microbiol 41:707–717. https://doi.org/10.1590/S1517-83822010000300022

    Article  Google Scholar 

  55. Qin Q-L, Xie B-B, Zhang X-Y et al (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196:2210–2215. https://doi.org/10.1128/JB.01688-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nobu MK, Narihiro T, Rinke C et al (2015) Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. Isme J 9:1710

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hamilton TL, Bovee RJ, Sattin SR et al (2016) Carbon and sulfur cycling below the chemocline in a meromictic lake and the identification of a novel taxonomic lineage in the FCB superphylum. Candidatus Aegiribacteria Front Microbiol. https://doi.org/10.3389/fmicb.2016.00598

    Article  PubMed  Google Scholar 

  58. Fischer MA, Güllert S, Neulinger SC et al (2016) Evaluation of 16S rRNA gene primer pairs for monitoring microbial community structures showed high reproducibility within and low comparability between datasets generated with multiple archaeal and bacterial primer pairs. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01297

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cabezas A, Bovio P, Etchebehere C (2019) Commercial formulation amendment transiently affects the microbial composition but not the biogas production of a full scale methanogenic UASB reactor. Environ Technol. https://doi.org/10.1080/09593330.2019.1600042

    Article  PubMed  Google Scholar 

  60. Yang Y, Yu K, Xia Y et al (2014) Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Appl Microbiol Biotechnol 98:5709–5718. https://doi.org/10.1007/s00253-014-5648-0

    Article  CAS  PubMed  Google Scholar 

  61. Sayed S (1987) Anaerobic treatment of slaughterhouse wastewater using the UASB process. Wageningen Agricultural Univesity

  62. Sousa DZ, Smidt H, Alves MM, Stams AJM (2009) Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiol Ecol 68:257–272. https://doi.org/10.1111/j.1574-6941.2009.00680.x

    Article  CAS  PubMed  Google Scholar 

  63. Kim S-H, Han S-K, Shin H-S (2004) Kinetics of LCFA inhibition on acetoclastic methanogenesis, propionate degradation and β-Oxidation. J Environ Sci Heal Part A 39:1025–1037. https://doi.org/10.1081/ESE-120028411

    Article  CAS  Google Scholar 

  64. Novak JT, Carlson DA (1970) The Kinetics of anaerobic long chain fatty acid degradation. Water Pollut Control Fed 42:1932–1943

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the project grant ANII FSE 17. Cecilia Callejas was funded by ANII (PhD thesis grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Callejas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callejas, C., Fernández, A., Passeggi, M. et al. Microbiota adaptation after an alkaline pH perturbation in a full-scale UASB anaerobic reactor treating dairy wastewater. Bioprocess Biosyst Eng 42, 2035–2046 (2019). https://doi.org/10.1007/s00449-019-02198-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02198-3

Keywords

Navigation