Skip to main content

Advertisement

Log in

Potential use of a thermal water cyanobacterium as raw material to produce biodiesel and pigments

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Global energy demand is increasing every day and most is still derived from non-renewable sources. Therefore, sustainable alternatives are sought to produce biofuels, such as biodiesel. Several studies have demonstrated the potential of microalgae and cyanobacteria to produce biodiesel and pigments. These pigments, such as lutein and astaxanthin, have a high commercial value and can economically support the production of biodiesel. However, few studies have explored the potential of cyanobacteria collected in thermal water. In these microorganisms, both biomass and metabolites production can be altered by the culture form. Thus, a cosmopolitan filamentous cyanobacterium (Geitlerinema amphibium) from thermal water was collected and isolated to evaluate its potential to produce fatty acids, biodiesel, and pigments in two culture media. G. amphibium was cultured in WC (Wright's Cryptophyte) and BBM (Bold’s Basal Medium) media. Thermal stress (40 °C for 48 h) was applied to the medium, which generated higher productivity of the biomass in BBM. The cyanobacterium contained higher biodiesel content in the WC medium and higher pigment content in the BBM medium. Thermal stress increased the biodiesel content by 350%, but decreased pigment content. Two pigments with high commercial value (astaxanthin and lutein) were identified. G. amphibium produced up to 2.74 mg g−1 of astaxanthin and 5.49 mg g−1 of lutein, which is seven times more lutein than Marigold, currently the main raw material used commercially. Therefore, G. amphibium has the potential to produce biodiesel, astaxanthin, and lutein concomitantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D’Alessandro EB, Antoniosi Filho NR (2016) Concepts and studies on lipid and pigments of microalgae: a review. Renew Sustain Energy Rev 58:832–841. https://doi.org/10.1016/j.rser.2015.12.162

    Article  CAS  Google Scholar 

  2. Jensen GS, Ginsberg DI, Drapeau MS (2001) Bluegreen algae as an immuno-enhancer and biomodulator. J Nutraceuticals Nutr 3:24–30

    Google Scholar 

  3. Kreitlow S, Mundt S, Lindequist U (1999) Cyanobacteria—a potential source of new biologically active substances. J Biotechnol 70:61–63. https://doi.org/10.1016/S0168-1656(99)00058-9

    Article  CAS  PubMed  Google Scholar 

  4. Dahms HU, Ying X, Pfeiffer C (2006) Antifouling potential of cyanobacteria: a mini-review. Biofouling 22:317–327. https://doi.org/10.1080/08927010600967261

    Article  CAS  PubMed  Google Scholar 

  5. Swain SS, Paidesetty SK, Padhy RN (2017) Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed Pharmacother 90:760–776. https://doi.org/10.1016/J.BIOPHA.2017.04.030

    Article  CAS  PubMed  Google Scholar 

  6. Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil: Oscillatoriales. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süßwasserflora von Mitteleuropa. Elsevier Spektrum Akademischer Verlag, Munique, p 759

    Google Scholar 

  7. Guiry MD, Guiry GM (2017) AlgaeBase. In: World-wide Electron. Publ. Natl. Univ. Ireland, Galway. https://www.algaebase.org/search/species/detail/?species_id=24844&distro=y#distro. Accessed 29 Nov 2018

  8. Romero-Villegas GI, Fiamengo M, Acién Fernández FG, Molina Grima E (2018) Utilization of centrate for the outdoor production of marine microalgae at pilot-scale in flat-panel photobioreactors. J Biotechnol 284:102–114. https://doi.org/10.1016/J.JBIOTEC.2018.08.006

    Article  CAS  PubMed  Google Scholar 

  9. Renugadevi K, Valli Nachiyar C, Sowmiya P, Sunkar S (2018) Antioxidant activity of phycocyanin pigment extracted from marine filamentous cyanobacteria Geitlerinema sp TRV57. Biocatal Agric Biotechnol 16:237–242. https://doi.org/10.1016/J.BCAB.2018.08.009

    Article  Google Scholar 

  10. Patel HM, Rastogi RP, Trivedi U, Madamwar D (2018) Structural characterization and antioxidant potential of phycocyanin from the cyanobacterium Geitlerinema sp. H8DM. Algal Res 32:372–383. https://doi.org/10.1016/J.ALGAL.2018.04.024

    Article  Google Scholar 

  11. Tinpranee N, Incharoensakdi A, Phunpruch S (2018) Screening cyanobacteria from marine coastal waters of Thailand for biohydrogen production. J Appl Phycol 30:3471–3481. https://doi.org/10.1007/s10811-018-1490-6

    Article  CAS  Google Scholar 

  12. Campos JEG, Almeida L (2012) Balanço térmico aplicado à recarga artificial dos aquíferos da região de Caldas Novas, estado de Goiás. Brazilian J Geol 42:196–207

    Google Scholar 

  13. Andersen RA (2005) Algal culturing techniques. Elsevier Academic Press, Burlington

    Google Scholar 

  14. Menezes RS, Soares AT, Marques Júnior JG et al (2016) Culture medium influence on growth, fatty acid, and pigment composition of Choricystis minor var. minor: a suitable microalga for biodiesel production. J Appl Phycol 28:2679–2686. https://doi.org/10.1007/s10811-016-0828-1

    Article  CAS  Google Scholar 

  15. D’Alessandro EB, Soares AT, Da Costa DC et al (2018) A thermal water microalga: Eutetramorus planctonicus as a promising source of fatty acids and lutein. J Environ Chem Eng 6:6707–6713. https://doi.org/10.1016/j.jece.2018.10.038

    Article  CAS  Google Scholar 

  16. D’Alessandro EB, Soares AT, Pereira J, Antoniosi Filho NR (2018) Viability of biodiesel production from a thermophilic microalga in conventional and alternative culture media. Brazilian J Bot 41:319–327. https://doi.org/10.1007/s40415-018-0459-7

    Article  Google Scholar 

  17. Union European (2010) EN 14214 Automotive fuels—fatty acid methyl esters (FAME) for diesel engines—requirements and test methods. Eur. Comm, Satandardization

    Google Scholar 

  18. Soares AT, Marques Júnior JG, Lopes RG et al (2016) Improvement of the extraction process for high commercial value pigments from Desmodes mus sp. Microalgae J Braz Chem Soc 27:1083–1093. https://doi.org/10.5935/0103-5053.20160004

    Article  CAS  Google Scholar 

  19. Carvalho LF, Oliveira MS, Costa JAV (2014) Evaluation of the influence of nitrogen and phosphorus nutrients in the culture and production of biosurfactants by microalga Spirulina. Int J Eng Res Appl 4:90–98

    Google Scholar 

  20. Bogen C, Klassen V, Wichmann J et al (2013) Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Bioresour Technol 133:622–626. https://doi.org/10.1016/j.biortech.2013.01.164

    Article  CAS  PubMed  Google Scholar 

  21. Jodłowska S, Latała A (2013) Combined effects of light and temperature on growth, photosynthesis, and pigment content in the mat-forming cyanobacterium Geitlerinema amphibium. Photosynthetica 51:202–214. https://doi.org/10.1007/s11099-013-0019-0

    Article  CAS  Google Scholar 

  22. Jacob-Lopes E, Cacia Ferreira Lacerda LM, Franco TT (2008) Biomass production and carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column photobioreactor. Biochem Eng J 40:27–34. https://doi.org/10.1016/j.bej.2007.11.013

    Article  CAS  Google Scholar 

  23. Smith-Bädorf HD, Chuck CJ, Mokebo KR et al (2013) Bioprospecting the thermal waters of the Roman baths: isolation of oleaginous species and analysis of the FAME profile for biodiesel production. AMB Express 3:9. https://doi.org/10.1186/2191-0855-3-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao Y, Wang H-P, Han B, Yu X (2019) Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: a review. Bioresour Technol 274:549–556. https://doi.org/10.1016/J.BIORTECH.2018.12.030

    Article  CAS  PubMed  Google Scholar 

  25. Batchu NK, Khater S, Patil S et al (2019) Whole genome sequence analysis of Geitlerinema sp. FC II unveils competitive edge of the strain in marine cultivation system for biofuel production. Genomics 111:465–472. https://doi.org/10.1016/J.YGENO.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  26. Guedes AC, Amaro HM, Barbosa CR et al (2011) Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Res Int 44:2721–2729. https://doi.org/10.1016/J.FOODRES.2011.05.020

    Article  CAS  Google Scholar 

  27. Li H-Y, Lu Y, Zheng J-W et al (2014) Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Mar Drugs 12:153–166. https://doi.org/10.3390/md12010153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nalley JO, O’Donnell DR, Litchman E (2018) Temperature effects on growth rates and fatty acid content in freshwater algae and cyanobacteria. Algal Res 35:500–507. https://doi.org/10.1016/J.ALGAL.2018.09.018

    Article  Google Scholar 

  29. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070. https://doi.org/10.1016/j.fuproc.2004.11.002

    Article  CAS  Google Scholar 

  30. Mühling M, Belay A, Whitton BA (2005) Variation in fatty acid composition of Arthrospira (Spirulina) strains. J Appl Phycol 17:137–146. https://doi.org/10.1007/s10811-005-7213-9

    Article  CAS  Google Scholar 

  31. Volkmann H, Imianovsky U, Furlong EB et al (2007) Influence of desalinator wastewater for the cultivation of Arthrospira platensis. Fatty acids profile. Grasas Aceites 58:396–401

    Article  CAS  Google Scholar 

  32. Sharma NK, Rai AK, Stal LJ (2014) Cyanobacteria: an economic perspective, 1st edn. Wiley Blackwell, Chichester

    Book  Google Scholar 

  33. D´Agosto M de A, Vieira da Silva MA, de Oliveira CM et al (2015) Evaluating the potential of the use of biodiesel for power generation in Brazil. Renew Sustain Energy Rev 43:807–817. https://doi.org/10.1016/j.rser.2014.11.055

    Article  Google Scholar 

  34. Satyanarayana KG, Mariano AB, Vargas JVC (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res 35:291–311. https://doi.org/10.1002/er.1695

    Article  Google Scholar 

  35. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232. https://doi.org/10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  36. Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2016) A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7:546. https://doi.org/10.3389/fmicb.2016.00546

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saini DK, Pabbi S, Shukla P (2018) Cyanobacterial pigments: perspectives and biotechnological approaches. Food Chem Toxicol 120:616–624. https://doi.org/10.1016/J.FCT.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  38. Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118. https://doi.org/10.3390/md9061101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumar M, Kulshreshtha J, Singh GP (2011) Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature. Brazilian J Microbiol 42:1128–1135. https://doi.org/10.1590/S1517-83822011000300034

    Article  CAS  Google Scholar 

  40. Takaichi S, Mochimaru M (2007) Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cell Mol Life Sci 64:2607–2619. https://doi.org/10.1007/s00018-007-7190-z

    Article  CAS  PubMed  Google Scholar 

  41. Latifi A, Ruiz M, Zhang C-C (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278. https://doi.org/10.1111/j.1574-6976.2008.00134.x

    Article  CAS  PubMed  Google Scholar 

  42. Zhao Y, Yue C, Geng S et al (2019) Role of media composition in biomass and astaxanthin production of Haematococcus pluvialis under two-stage cultivation. Bioprocess Biosyst Eng 42:593–602. https://doi.org/10.1007/s00449-018-02064-8

    Article  CAS  PubMed  Google Scholar 

  43. Paliwal C, Ghosh T, George B et al (2016) Microalgal carotenoids: Potential nutraceutical compounds with chemotaxonomic importance. Algal Res 15:24–31. https://doi.org/10.1016/J.ALGAL.2016.01.017

    Article  Google Scholar 

  44. Erdoğan A, Demirel Z, Eroğlu AE, Dalay MC (2016) Carotenoid profile in Prochlorococcus sp. and enrichment of lutein using different nitrogen sources. J Appl Phycol 28:3251–3257. https://doi.org/10.1007/s10811-016-0861-0

    Article  Google Scholar 

  45. Mary Leema JT, Kirubagaran R, Vinithkumar NV et al (2010) High value pigment production from Arthrospira (Spirulina) platensis cultured in seawater. Bioresour Technol 101:9221–9227. https://doi.org/10.1016/J.BIORTECH.2010.06.120

    Article  CAS  Google Scholar 

  46. Rodrigues DB, Menezes CR, Mercadante AZ et al (2015) Bioactive pigments from microalgae Phormidium autumnale. Food Res Int 77:273–279. https://doi.org/10.1016/j.foodres.2015.04.027

    Article  CAS  Google Scholar 

  47. Lin J-H, Lee D-J, Chang J-S (2015) Lutein production from biomass: marigold flowers versus microalgae. Bioresour Technol 184:421–428. https://doi.org/10.1016/j.biortech.2014.09.099

    Article  CAS  PubMed  Google Scholar 

  48. Shah MMR, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7:531. https://doi.org/10.3389/fpls.2016.00531

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jeevanantham G, Vinoth M, Hussain JM et al (2019) Biochemical characterization of five marine cyanobacteria species for their biotechnological applications. J Pharmacogn Phytochem 8:635–640

    Google Scholar 

  50. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466. https://doi.org/10.1016/S1389-0344(03)00076-5

    Article  CAS  PubMed  Google Scholar 

  51. Del Río E, Acién FG, García-Malea MC et al (2008) Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnol Bioeng 100:397–402. https://doi.org/10.1002/bit.21770

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Bezerra D’Alessandro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Alessandro, E.B., Soares, A.T., de Oliveira D’Alessandro, N.C. et al. Potential use of a thermal water cyanobacterium as raw material to produce biodiesel and pigments. Bioprocess Biosyst Eng 42, 2015–2022 (2019). https://doi.org/10.1007/s00449-019-02196-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02196-5

Keywords

Navigation