Skip to main content
Log in

Application of an efficient indole oxygenase system from Cupriavidus sp. SHE for indigo production

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Indigo, one of the most widely used dyes, is mainly produced by chemical processes, which generate amounts of pollutants and need high energy consumption. Microbial production of indigo from indole has attracted much attention; however, the indole oxygenase has never been explored and applied for indigo production. In the present study, the indole oxygenase indAB genes were successfully cloned from Cupriavidus sp. SHE and heterologously expressed in Escherichia coli BL21(DE3) (designated as IND_AB). Strain IND_AB produced primarily indigo in tryptophan medium by high-performance liquid chromatography–mass spectroscopy (HPLC–MS) analysis. The preferable conditions for indigo production were pH 6.5 (normal pH), 30 °C, 150 rpm, strain inoculation concentration OD600 0.08, and induction with 1 mM IPTG at the time of inoculation. The optimal culture medium compositions were further determined as tryptophan 1.0 g/L, NaCl 3.55 g/L, and yeast extract 5.12 g/L based on single-factor experiment and response surface methodology. The highest indigo yield was 307 mg/L, which was 4.39-fold higher than the original value. This is the first study investigating indigo production using the indole oxygenase system and the results highlighted its potential in bio-indigo industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222:167–169

    Article  CAS  Google Scholar 

  2. Bechtold T, Turcanu A, Geissler S, Ganglberger E (2002) Process balance and product quality in the production of natural indigo from Polygonum tinctorium Ait. applying low-technology methods. Bioresour Technol 81:171–177

    Article  CAS  Google Scholar 

  3. Pathak H, Madamwar D (2010) Biosynthesis of indigo dye by newly isolated naphthalene-degrading strain Pseudomonas sp. HOB1 and its application in dyeing cotton fabric. Appl Biochem Biotechnol 160:1616–1626

    Article  CAS  Google Scholar 

  4. Qu YY, Zhang XW, Ma Q, Ma F, Zhang Q, Li XL, Zhou H, Zhou JT (2012) Indigo biosynthesis by Comamonas sp. MQ. Biotechnol Lett 34:353–357

    Article  CAS  Google Scholar 

  5. Han GH, Bang SE, Babu BK, Chang M, Shin HJ, Kim SW (2011) Bio-indigo production in two different fermentation systems using recombinant Escherichia coli cells harboring a flavin-containing monooxygenase gene (fmo). Process Biochem 46:788–791

    Article  CAS  Google Scholar 

  6. Mercadal JPR, Isaac P, Siñeriz F, Ferrero MA (2010) Indigo production by Pseudomonas sp. J26, a marine naphthalene-degrading strain. J Basic microbiol 50:290–293

    Article  CAS  Google Scholar 

  7. Qu YY, Ma Q, Zhang XW, Zhou H, Li XL, Zhou JT (2012) Optimization of indigo production by a newly isolated Pseudomonas sp. QM. J Basic Microbiol 52:687–694

    Article  CAS  Google Scholar 

  8. Qu YY, Pi WQ, Ma F, Zhou JT, Zhang XW (2010) Influence and optimization of growth substrates on indigo formation by a novel isolate Acinetobacter sp. PP-2. Bioresour Technol 101:4527–4532

    Article  CAS  Google Scholar 

  9. Bhushan B, Samanta SK, Jain RK (2000) Indigo production by naphthalene-degrading bacteria. Lett Appl Microbiol 31:5–9

    Article  CAS  Google Scholar 

  10. Murdock D, Ensley BD, Serdar C, Thalen M (1993) Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Nat Biotechnol 11:381–386

    Article  CAS  Google Scholar 

  11. Berry A, Dodge TC, Pepsin M, Weyler W (2002) Application of metabolic engineering to improve both the production and use of biotech indigo. J Ind Microbiol biotechnol 28:127

    Article  CAS  Google Scholar 

  12. Qu YY, Xu BW, Zhang XW, Ma Q, Zhou H, Kong CL, Zhang ZJ, Zhou JT (2013) Biotransformation of indole by whole cells of recombinant biphenyl dioxygenase and biphenyl-2,3-dihydrodiol-2,3-dehydrogenase. Biochem Eng J 72:54–60

    Article  CAS  Google Scholar 

  13. Woo HJ, Sanseverino J, Cox CD, Robinson KG, Sayler GS (2000) The measurement of toluene dioxygenase activity in biofilm culture of Pseudomonas putida F1. J Microbiol Methods 40:181–191

    Article  CAS  Google Scholar 

  14. Cheng L, Yin S, Chen M, Sun BG, Hao S, Wang CT (2016) Enhancing indigo production by over-expression of the styrene monooxygenase in Pseudomonas putida. Curr Microbiol 73:248–254

    Article  CAS  Google Scholar 

  15. O’Connor KE, Dobson AD, Hartmans S (1997) Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl Environ Microbiol 63:4287–4291

    PubMed  PubMed Central  Google Scholar 

  16. Qu YY, Shi SN, Zhou H, Ma Q, Li XL, Zhang XW, Zhou JT (2012) Characterization of a novel phenol hydroxylase in indoles biotransformation from a strain Arthrobacter sp. W1. PLoS ONE 7:e44313

    Article  CAS  Google Scholar 

  17. Doukyu N, Toyoda K, Aono R (2003) Indigo production by Escherichia coli carrying the phenol hydroxylase gene from Acinetobacter sp. strain ST-550 in a water-organic solvent two-phase system. Appl Microbiol Biotechnol 60:720–725

    Article  CAS  Google Scholar 

  18. Wongsaroj L, Sallabhan R, Dubbs JM, Mongkolsuk S, Loprasert S (2015) Cloning of Toluene 4-monooxygenase genes and application of two-phase system to the production of the anticancer agent, indirubin. Mol Biotechnol 57:720–726

    Article  CAS  Google Scholar 

  19. Yen KM, Karl MR, Blatt LM, Simon MJ, Winter RB, Fausset PR, Lu HS, Harcourt AA, Chen KK (1991) Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J Bacteriol 173:5315–5327

    Article  CAS  Google Scholar 

  20. McClay K, Boss C, Keresztes I, Steffan RJ (2005) Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Appl Environ Microbiol 71:5476–5483

    Article  CAS  Google Scholar 

  21. Rui L, Reardon KF, Wood TK (2005) Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl Microbiol Biotechnol 66:422–429

    Article  CAS  Google Scholar 

  22. Mermod N, Harayama S, Timmis KN (1986) New route to bacterial production of indigo. Nat Biotechnol 4:321–324

    Article  CAS  Google Scholar 

  23. Meyer A, Würsten M, Schmid A, Kohler HP, Witholt B (2002) Hydroxylation of indole by laboratory-evolved 2-hydroxybiphenyl 3-monooxygenase. J Biol Chem 277:34161–34167

    Article  CAS  Google Scholar 

  24. Gillam EM, Aguinaldo AMA, Notley LM, Kim D, Mundkowski RG, Volkov AA, Arnold FH, Soucek P, DeVoss JJ, Guengerich FP (1999) Formation of indigo by recombinant mammalian cytochrome P450. Biochem Biophys Res Commun 265:469–472

    Article  CAS  Google Scholar 

  25. Sadauskas M, Vaitekūnas J, Gasparavičiūtė R, Meškys R (2017) Genetic and biochemical characterization of indole biodegradation in Acinetobacter sp. strain O153. Appl Environ Microbiol 83:e01453–e1517

    Article  CAS  Google Scholar 

  26. Qu YY, Ma Q, Liu ZY, Wang WW, Tang HZ, Zhou JT, Xu P (2017) Unveiling the biotransformation mechanism of indole in a Cupriavidus sp. strain. Mol Microbiol 106:905–918

    Article  CAS  Google Scholar 

  27. Gong F, Ito K, Nakamura Y, Yanofsky C (2001) The mechanism of tryptophan induction of tryptophanase operon expression: tryptophan inhibits release factor-mediated cleavage of TnaC-peptidyl-tRNAPro. Proc Natl Acad Sci USA 98:8997–9001

    Article  CAS  Google Scholar 

  28. Ma Q, Zhang XW, Qu YY (2018) Biodegradation and biotransformation of indole: advances and perspectives. Front Microbiol 9:2625

    Article  Google Scholar 

  29. Zhang XW, Qu YY, Ma Q, Zhang ZJ, Li DX, Wang JW, Shen WL, Shen E, Zhou J (2015) Illumina MiSeq sequencing reveals diverse microbial communities of activated sludge systems stimulated by different aromatics for indigo biosynthesis from indole. PLoS ONE 10:e0125732

    Article  Google Scholar 

  30. Adachi J, Mori Y, Matsui S, Takigami H, Fujino J, Kitagawa H, Miller CA III, Kato T, Saeki K, Matsuda T (2001) Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J Biol Chem 276:31475–31478

    Article  CAS  Google Scholar 

  31. Gillam EM, Notley LM, Cai H, De Voss JJ, Guengerich FP (2000) Oxidation of indole by cytochrome P450 enzymes. Biochemistry 39:13817–13824

    Article  CAS  Google Scholar 

  32. Bjerregaard-Andersen K, Sommer T, Jensen JK, Jochimsen B, Etzerodt M, Morth JP (2014) A proton wire and water channel revealed in the crystal structure of isatin hydrolase. J Biol Chem 289:21351–21359

    Article  Google Scholar 

  33. Hannig G, Makrides SC (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 16:54–60

    Article  CAS  Google Scholar 

  34. Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Weyler W, Sanford K (2000) The commercial production of chemicals using pathway engineering. Biochim Biophy Acta 1543:434–455

    Article  CAS  Google Scholar 

  35. Kwon NR, Chae JC, Choi KY, Yoo M, Zylstra GJ, Kim YM, Zylstra GJ, Kim YM, Kang BS, Kim E (2008) Identification of functionally important amino acids in a novel indigo-producing oxygenase from Rhodococcus sp. strain T104. Appl Microbiol Biotechnol 79:417–422

    Article  CAS  Google Scholar 

  36. Li A, Qu YY, Zhou JT, Gou M (2009) Isolation and characteristics of a novel biphenyl-degrading bacterial strain, Dyella ginsengisoli LA-4. J Environ Sci (China) 21:211–217

    Article  CAS  Google Scholar 

  37. Zhang XW, Qu YY, Ma Q, Zhou H, Li XL, Kong CL, Zhou JT (2013) Cloning and expression of naphthalene dioxygenase genes from Comamonas sp. MQ for indigoids production. Process Biochem 48:581–587

    Article  CAS  Google Scholar 

  38. Lu Y, Mei L (2007) Co-expression of P450 BM3 and glucose dehydrogenase by recombinant Escherichia coli and its application in an NADPH-dependent indigo production system. J Ind Microbiol Biot 34(3):247–253

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Open Project of State Key Laboratory of Urban Water Resource and Environment (No. ESK201529); and the Programme of Introducing Talents of Discipline to Universities (Grant No. B13012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Qu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Ma, Q., Li, Y. et al. Application of an efficient indole oxygenase system from Cupriavidus sp. SHE for indigo production. Bioprocess Biosyst Eng 42, 1963–1971 (2019). https://doi.org/10.1007/s00449-019-02189-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02189-4

Keywords

Navigation