Skip to main content
Log in

Improving poly-(γ-glutamic acid) production from a glutamic acid-independent strain from inulin substrate by consolidated bioprocessing

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

To excavate the application of Jerusalem artichoke on poly(γ-glutamic acid) (γ-PGA) production, a γ-PGA producing strain Bacillus amyloliquefaciens NX-2S154 was obtained through atmospheric and room temperature plasma mutagenesis, which produced 14.83 ± 0.31 g/L of γ-PGA in batch fermentation with raw inulin extract. Simultaneous saccharification and fermentation (SSF) by adding commercial inulinase were further investigated for γ-PGA fermentation. Results showed SSF could eliminate the ineffective utilization of inulin while avoiding inhibition effect of high concentration substrate, which made γ-PGA concentration reach 18.54 ± 0.39 g/L with the process being shortened by 17%. Finally, an immobilized column for reducing inulinase cost was introduced to γ-PGA production. Repeated batch cultures showed the novel bioreactor exhibited higher stability and simplicity and gave average γ-PGA concentration and productivity of 19.40 ± 0.37 g/L and 0.27 ± 0.008 g/L/h, respectively. This work proposes a productive method for efficient γ-PGA production using Jerusalem artichoke feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ashiuchi M, Misono H (2002) Biochemistry and molecular genetics of poly-gamma-glutamate synthesis. Appl Microbiol Biotechnol 59:9–14

    Article  CAS  PubMed  Google Scholar 

  2. Liu X, Liu F, Liu S, Li H, Ling P, Zhu X (2013) Poly-γ-glutamate from Bacillus subtilis inhibits tyrosinase activity and melanogenesis. Appl Microbiol Biotechnol 97:9801–9809

    Article  CAS  PubMed  Google Scholar 

  3. Cho SH, Kim A, Shin W, Min BH, Noh HJ, Hong KS, Cho JH, Yong TL (2017) Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly(γ-glutamic acid) hydrogel. Int J Nanomed 12:2607–2620

    Article  CAS  Google Scholar 

  4. Jia C, Huang W, Tang X, Ding S, Yang W, Li Z, Fu G, Rayas-Duarte P (2016) Antifreeze activity of γ-polyglutamic acid and its impact on freezing resistance of yeast and frozen sweet dough. Cereal Chem 93:3

    Article  CAS  Google Scholar 

  5. Sakamoto S, Kawase Y (2016) Adsorption capacities of poly-γ-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters. J Environ Radioact 165:151

    Article  CAS  PubMed  Google Scholar 

  6. Lei P, Xu Z, Ding Y, Tang B, Zhang Y, Li H, Feng X, Xu H (2015) Effect of poly(γ-glutamic acid) on the physiological responses and calcium signaling of rape seedlings (Brassica napus L.) under cold stress. J Agr Food Chem 63:10399

    Article  CAS  Google Scholar 

  7. Feng X, Tang B, Jiang Y, Xu Z, Lei P, Liang J, Xu H (2016) Efficient production of poly-γ-glutamic acid from cane molasses by Bacillus subtilis NX-2 immobilized on chemically modified sugarcane bagasse. J Chem Technol Biotechnol 91:2085–2093

    Article  CAS  Google Scholar 

  8. Ashiuchi M, Kamei T, Baek DH, Shin SY, Sung MH, Soda K, Yagi T, Misono H (2001) Isolation of Bacillus subtilis (chungkookjang), a poly-γ-glutamate producer with high genetic competence. Appl Microbiol Biotechnol 57:764–769

    Article  CAS  PubMed  Google Scholar 

  9. Bajaj IB, Lele SS, Singhal RS (2009) A statistical approach to optimization of fermentative production of poly(γ-glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresour Technol 100:826–832

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, Zhu J, Zhu X, Jin C, Zhang A, Hong Y, Jin H, Lei H, Xu Z (2012) High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10. Bioresour Technol 116:241–246

    Article  CAS  PubMed  Google Scholar 

  11. Cao M, Geng W, Liu L, Song C, Xie H, Guo W, Jin Y, Wang S (2011) Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour Technol 102:4251–4257

    Article  CAS  PubMed  Google Scholar 

  12. Peng Y, Jiang B, Zhang T, Mu W, Miao M, Hua Y (2015) High-level production of poly(γ-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus. Process Biochem 50:329–335

    Article  CAS  Google Scholar 

  13. Shoaib M, Shehzad A, Omar M, Rakha A, Raza H, Sharif HR, Shakeel A, Ansari A, Niazi S (2016) Inulin: properties, health benefits and food applications. Carbohydr Polym 147:444–454

    Article  CAS  PubMed  Google Scholar 

  14. Qiu Y, Lei P, Zhang Y, Sha Y, Zhan Y, Xu Z, Li S, Xu H, Ouyang P (2018) Recent advances in bio-based multi-products of agricultural Jerusalem artichoke resources. Biotechnol Biofuels 11:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Long X, Huang Z, Zhang Z, Li Q, Zed R, Liu Z (2010) Seawater stress differentially affects germination, growth, photosynthesis, and ion concentration in genotypes of Jerusalem artichoke (Helianthus tuberosus L.). J Plant Growth Regul 29:223–231

    Article  CAS  Google Scholar 

  16. Szambelan K, Nowak J, Jelen H (2005) The composition of Jerusalem artichoke (Helianthus tuberosus L.) spirits obtained from fermentation with bacteria and yeasts. Eng Life Sci 5:68–71

    Article  CAS  Google Scholar 

  17. Qiu Y, Sha Y, Zhang Y, Xu Z, Li S, Lei P, Xu Z, Feng X, Xu H (2017) Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S. Bioresour Technol 239:197–203

    Article  CAS  PubMed  Google Scholar 

  18. Dao TH, Zhang J, Bao J (2013) Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in lactic acid production from Jerusalem artichoke tubers (Jat). Bioresour Technol 148:157–162

    Article  CAS  PubMed  Google Scholar 

  19. Kalil SJ, Suzan R, Maugeri F, Rodrigues MI (2001) Optimization of inulinase production by Kluyveromyces marxianus using factorial design. Appl Biochem Biotechnol 94:257–264

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen QD, Rezessy-Szabó JM, Czukor B, Hoschke Á (2011) Continuous production of oligofructose syrup from Jerusalem artichoke juice by immobilized endo-inulinase. Process Biochem 46:298–303

    Article  CAS  Google Scholar 

  21. Zhang D, Feng X, Zhou Z, Zhang Y, Xu H (2012) Economical production of poly(γ-glutamic acid) using untreated cane molasses and monosodium glutamate waste liquor by Bacillus subtilis NX-2. Bioresour Technol 114:583–588

    Article  CAS  PubMed  Google Scholar 

  22. Dong TT, Gong JS, Gu BC, Zhang Q, Li H, Lu ZM, Lu ML, Shi JS, Xu ZH (2017) Significantly enhanced substrate tolerance of Pseudomonas putida nitrilase via atmospheric and room temperature plasma and cell immobilization. Bioresour Technol 244:1104–1110

    Article  CAS  PubMed  Google Scholar 

  23. Zhao B, Li Y, Li C, Yang H, Wang W (2018) Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening. Appl Microbiol Biotechnol 102:2351–2361

    Article  CAS  PubMed  Google Scholar 

  24. Gao J, Xu H, Li QJ, Feng XH, Li S (2010) Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R, R -2,3-butanediol. Bioresour Technol 101:7076–7082

    Article  CAS  Google Scholar 

  25. Li L, Li L, Wang Y, Du Y, Qin S (2013) Biorefinery products from the inulin-containing crop Jerusalem artichoke. Biotechnol Lett 35:471

    Article  CAS  PubMed  Google Scholar 

  26. Chi Z, Chi Z, Zhang T, Liu G, Yue L (2009) Inulinase-expressing microorganisms and applications of inulinases. Appl Microbiol Biotechnol 82:211

    Article  CAS  PubMed  Google Scholar 

  27. Kango N (2008) Production of inulinase using tap roots of dandelion (Taraxacum officinale) by Aspergillus niger. J Food Eng 85:473–478

    Article  CAS  Google Scholar 

  28. Singh RS, Sooch BS, Puri M (2007) Optimization of medium and process parameters for the production of inulinase from a newly isolated Kluyveromyces marxianus YS-1. Bioresour Technol 98:2518–2525

    Article  CAS  PubMed  Google Scholar 

  29. Gao J, Xu YY, Yang HM, Xu H, Xue F, Li S, Feng XH (2014) Gene cloning, expression, and characterization of an exo-inulinase from Paenibacillus polymyxa ZJ-9. Appl Biochem Biotechnol 173:1419–1430

    Article  CAS  PubMed  Google Scholar 

  30. Szambelan K, Nowak J, Chrapkowska KJ (2004) Comparison of bacterial and yeast ethanol fermentation yield from Jerusalem artichoke (Helianthus tuberosus L.) tuberus pulp and juices. Acta Sci Pol Technol Aliment 3:45–53

    CAS  Google Scholar 

  31. Sun LH, Wang XD, Dai JY, Xiu ZL (2009) Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol 82:847–852

    Article  CAS  PubMed  Google Scholar 

  32. Zhang L, Zhao H, Gan M, Jin Y, Gao X, Chen Q, Guan J, Wang Z (2011) Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales. Bioresour Technol 102:4573

    Article  CAS  PubMed  Google Scholar 

  33. Xu Q, Zang Y, Zhou J, Liu P, Li X, Yong Q, Ouyang J (2016) Highly efficient production of d-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus. Bioprocess Biosyst Eng 39:1–9

    Article  CAS  Google Scholar 

  34. Li K, Qin JC, Liu CG, Bai FW (2016) Optimization of pretreatment, enzymatic hydrolysis and fermentation for more efficient ethanol production by Jerusalem artichoke stalk. Bioresour Technol 221:188–194

    Article  CAS  PubMed  Google Scholar 

  35. Flores AC, Morlett JA, Rodríguez R (2016) Inulin potential for enzymatic obtaining of prebiotic oligosaccharides. Crit Rev Food Sci Nutr 56:1893–1902

    Article  CAS  PubMed  Google Scholar 

  36. Chang MY, Juang RS (2004) Stability and catalytic kinetics of acid phosphatase immobilized on composite beads of chitosan and activated clay. Process Biochem 39:1087–1091

    Article  CAS  Google Scholar 

  37. Holyavka MG, Artyukhov VG, Seredin PV (2016) The interaction of inulinase molecules with a chitosan matrix: UV-induced changes in the functional properties of immobilized inulinase. Biophysics 61:871–876

    Article  CAS  Google Scholar 

  38. Yuan WJ, Zhao X, Chen L, Bai F (2013) Improved ethanol production in Jerusalem artichoke tubers by overexpression of inulinase gene in Kluyveromyces marxianus. Bioprocess Biosyst Eng 18:721–727

    Article  CAS  Google Scholar 

  39. Ling J, Qian W, Xu Q, Zhu L, He H (2017) Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene. Sci Rep 7:7940

    Article  CAS  Google Scholar 

  40. Westbrook AW, Moo-Young M, Chou CP (2016) Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis. Appl Environ Microbiol 82:4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kongklom N, Luo H, Shi Z et al (2015) Production of poly-γ-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies. Biochem Eng J 100:67–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Nature Science Foundation of China (No. 21878152; No. 21506098; No. 21776133), the Nanchang Hongcheng Specialist Project, the Six Talent Peaks Project in Jiangsu Province (2016-SWYY-027), Graduate Student Innovation Project of Jiangsu Province (No. KYCX18_1112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Zhang, Y., Zhu, Y. et al. Improving poly-(γ-glutamic acid) production from a glutamic acid-independent strain from inulin substrate by consolidated bioprocessing. Bioprocess Biosyst Eng 42, 1711–1720 (2019). https://doi.org/10.1007/s00449-019-02167-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02167-w

Keywords

Navigation