Skip to main content

Advertisement

Log in

Solid-state fermentation of Bacillus thuringiensis var kurstaki HD-73 maintains higher biomass and spore yields as compared to submerged fermentation using the same media

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

To determine the growth kinetic parameters, substrate consumption and spore yields for Bacillus thuringiensis, liquid fermentation (SmF) and solid-state fermentation (SSF), on polyurethane foam (PUF), were analysed comprising strictly the same media. The analysis included three medium concentrations, maintaining the same C/N ratio, with initial glucose at 12.5, 25, and 50 g L−1 (1X, 2X and 4X, respectively). SSF at 2X and 4X produced higher amounts of total biomass, vegetative growth and even early sporulation. Notably, at all glucose concentrations, sporulation was not inhibited in SSF as seen partially in SmF at 2X, and totally at 4X. Micrographs from PUF cultures showed thin layers of bacteria forming large horizontal aggregates, associated with the higher biomass yields and the early cell differentiation. This is the first work showing that SSF improves spore yields of B. thuringiensis in media with high substrate concentrations, using PUF as a research tool for comparative analysis with application in new production systems including biofilm-forming microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2012.01.003

    Article  PubMed  Google Scholar 

  2. Wang J, Mei H, Qian H, Tang Q, Liu X, Yu Z, He J (2013) Expression profile and regulation of spore and parasporal crystal formation-associated genes in Bacillus thuringiensis. J Proteome Res 15:6. https://doi.org/10.1021/pr4003728

    Article  CAS  Google Scholar 

  3. Mounsef JR, Salameh D, Louka N, Brandam C, Lteif R (2015) The effect of aeration conditions, characterized by the volumetric mass transfer coefficient KLa, on the fermentation kinetics of Bacillus thuringiensis kurstaki. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2015.06.387

    Article  PubMed  Google Scholar 

  4. Navarro-Martinez AK, Pérez-Guevara F (2014) Construction of a biodynamic model for cry protein production studies. AMB Express. https://doi.org/10.1186/s13568-014-0079-y

    Article  Google Scholar 

  5. Sarrafzadeh MH, Schorr-Galindo S, La HJ, Oh HM (2014) Aeration effects on metabolic events during sporulation of Bacillus thuringiensis. J Microbiol. https://doi.org/10.1007/s12275-014-3547-9

    Article  PubMed  Google Scholar 

  6. Slamti L, Perchat S, Huillet E, Lereclus D (2014) Quorum sensing in Bacillus thuringiensis is required for completion of a full infectious cycle in the insect. Toxins (Basel). https://doi.org/10.3390/toxins6082239

    Article  Google Scholar 

  7. Verplaetse E, Slamti L, Gohar M, Lereclus D (2015) Cell differentiation in a Bacillus thuringiensis population during planktonic growth, biofilm formation, and host infection. MBio. https://doi.org/10.1016/j.resmic.2016.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  8. Verplaetse E, Slamti L, Gohar M, Lereclus D (2017) Two distinct pathways lead Bacillus thuringiensis to commit to sporulation in biofilm. Res Microbiol. https://doi.org/10.1016/j.resmic.2016.03.006

    Article  PubMed  Google Scholar 

  9. Mols M, Abee T (2011) Primary and secondary oxidative stress in Bacillus. Environ Microbiol. https://doi.org/10.1111/j.1462-2920.2011.02433.x

    Article  PubMed  Google Scholar 

  10. López-Pérez M, Viniegra-González G (2016) Production of protein and metabolites by yeast grown in solid state fermentation: present status and perspectives. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.4819

    Article  Google Scholar 

  11. Soccol CR, da Costa ES, Letti LA, Karp SG, Woiciechowski LP, Vandenberghe LP (2017) Recent developments and innovations in solid state fermentation. Biotechnol Res Innov. https://doi.org/10.1016/j.biori.2017.01.002

    Article  Google Scholar 

  12. Hayrapetyan H, Abee T, Nierop Groot M (2016) Sporulation dynamics and spore heat resistance in wet and dry biofilms of Bacillus cereus. Food Control. https://doi.org/10.1016/j.foodcont.2015.08.027

    Article  Google Scholar 

  13. van der Voort M, Abee T (2013) Sporulation environment of emetic toxin-producing Bacillus cereus strains determines spore size, heat resistance and germination capacity. J Appl Microbiol. https://doi.org/10.1111/jam.12118

    Article  PubMed  Google Scholar 

  14. Jisha VN, Babysarojam Smitha R, Priji P, Sajith S, Benjamin S (2014) Biphasic fermentation is an efficient strategy for the overproduction of δ-endotoxin from Bacillus thuringiensis. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-014-1383-3

    Article  PubMed  Google Scholar 

  15. Narayanan JV, Babysarojam SR, Faisal PA, Niravath R, Moolath BG (2017) Crude Bacillus thuringiensis pellets efficiently combats Eutetranychus orientalis, the spider mite. Int J Pest Manag. https://doi.org/10.1080/09670874.2017.1390622

    Article  Google Scholar 

  16. Sailas B (2015) Bacillus thuringiensis subsp. kurstaki in raw solid fermented matter efficiently combats the coconut pest. Aceria guerreronis Keifer Bt Res 15:8. https://doi.org/10.5376/bt.2015.06.0002

    Article  Google Scholar 

  17. Smitha RB, Jisha VN, Sajith S, Benjamin S (2013) Dual production of amylase and δ-endotoxin by Bacillus thuringiensis subsp. kurstaki during biphasic fermentation. Microbiology. https://doi.org/10.1134/S0026261714010147

    Article  Google Scholar 

  18. Dinorín-Téllez-Girón J, Delgado-Macuil RJ, Larralde Corona CP, Martínez Montes FJ, de la Torre Martínez M, López-Y-López VE (2015) Reactance and resistance: main properties to follow the cell differentiation process in Bacillus thuringiensis by dielectric spectroscopy in real time. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-015-6562-9

    Article  PubMed  Google Scholar 

  19. Lima-Pérez J, Rodríguez-Gómez D, Loera O, Viniegra-González G, López-Pérez M (2018) Differences in growth physiology and aggregation of Pichia pastoris cells between solid state and submerged fermentations under aerobic conditions. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.5384

    Article  Google Scholar 

  20. Xiao Z, Storms R, Tsang A (2005) Microplate-based carboxymethylcellulose assay for endoglucanase activity. Anal Biochem. https://doi.org/10.1016/j.ab.2005.01.052

    Article  PubMed  Google Scholar 

  21. Gatto M, Muratori S, Rinaldi S (1988) A functional interpretation of the logistic equation. Ecol Modell. https://doi.org/10.1016/0304-3800(88)90113-5

    Article  Google Scholar 

  22. Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell Scientific Publications, Oxford

    Google Scholar 

  23. Berbert-Molina MA, Prata MR, Pessanha LG, Silveira MM (2008) Kinetics of Bacillus thuringiensis var. israelensis growth on high glucose concentrations. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-008-0439-1

    Article  PubMed  Google Scholar 

  24. Viniegra-González G, Favela-Torres E, Aguilar CN, de Rómero-Gomez SJ, Díaz-Godínez G, Augur C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J. https://doi.org/10.1016/S1369-703X(02)00128-6

    Article  Google Scholar 

  25. Boniolo FS, Rodrigues RC, Prata AMR, López ML, Jacinto T, Da Silveira MM, Berbert-Molina MA (2012) Oxygen supply in Bacillus thuringiensis fermentations: bringing new insights on their impact on sporulation and δ-endotoxin production. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-011-3746-9

    Article  PubMed  Google Scholar 

  26. Asaff A, Cerda-García-Rojas CM, Viniegra-González G, de la Torre M (2006) Carbon distribution and redirection of metabolism in Paecilomyces fumosoroseus during solid state and liquid fermentations. Process Biochem. https://doi.org/10.1016/j.procbio.2006.01.001

    Article  Google Scholar 

  27. Battino R (1981) Oxygen and ozone (Data Series). Pergamon Press, Ohio, p 519

    Google Scholar 

  28. Rischbieter E, Schumpe A, Wunder V (1996) Gas solubilities in aqueous solutions of organic substances. J Chem Eng Data 41:809–812. https://doi.org/10.1021/je960039c

    Article  CAS  Google Scholar 

  29. Devidas PC, Pandit BH, Vitthalrao PS (2014) Evaluation of different culture media for improvement in bioinsecticides production by indigenous Bacillus thuringiensis and their application against larvae of Aedes aegypti. Sci World J. https://doi.org/10.1155/2014/273030

    Article  Google Scholar 

  30. Zouari N, Achour O, Jaoua S (2002) Production of delta-endotoxin by Bacillus thuringiensis subsp kurstaki and overcoming of catabolite repression by using highly concentrated gruel and fish meal media in 2 and 20 dm3 fermenters. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.650

    Article  Google Scholar 

  31. López-Pérez M, Loera O, Guerrero-Olazarán M, Viader-Salvadó JM, Gallegos-López JA, Fernández FJ, Favela-Torres E, Viniegra-González G (2010) Cell growth and Trametes versicolor laccase production in transformed Pichia pastoris cultured by solid state or submerged fermentations. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.2306

    Article  Google Scholar 

  32. Čáp M, Váchová L, Palková Z (2012) Reactive oxygen species in the signaling and adaptation of multicellular microbial communities. Oxid Med Cell Longev. https://doi.org/10.1155/2012/976753

    Article  PubMed  PubMed Central  Google Scholar 

  33. Frey RL, He L, Cui Y, Decho AW, Kawaguchi T, Ferguson PL, Ferry JL (2010) Reaction of N-acylhomoserine lactones with hydroxyl radicals: rates, products, and effects on signaling activity. Environ Sci Technol. https://doi.org/10.1021/es100663e

    Article  PubMed  Google Scholar 

  34. Green J, Rolfe MD, Smith LJ (2014) Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence. https://doi.org/10.4161/viru.27794

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hall PR, Elmore BO, Spang CH, Alexander SM, Manifold-Wheeler BC, Castleman MJ, Daly SM, Peterson MM, Sully EK, Femling JK, Otto M, Horswill AR, Timmins GS, Gresham HD (2013) Nox2 modification of LDL is essential for optimal apolipoprotein B-mediated control of agr Type III Staphylococcus aureus quorum-sensing. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1003166

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yarwood JM, Paquette KM, Tikh UB, Volper EM, Greenberg EP (2007) Generation of virulence factor variants in Staphylococcus aureus biofilms. J Bacteriol. https://doi.org/10.1128/JB.00789-07

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim HY, Heo DY, Park HM, Singh D, Lee CH (2016) Metabolomic and transcriptomic comparison of solid state and submerged fermentation of Penicillium expansum KACC 40815. PLoS One. https://doi.org/10.1371/journal.pone.0149012

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pérez-Guzmán D, Montesinos-Matías R, Arce-Cervantes O, Gómez-Quiroz LE, Loera O, Garza-López PM (2016) Reactive oxygen species production, induced by atmospheric modification, alter conidial quality of Beauveria bassiana. J Appl Microbiol. https://doi.org/10.1111/jam.13156

    Article  PubMed  Google Scholar 

  39. Chen D, Xu D, Li M, He J, Gong Y, Wu D, Sun M, Yu Z (2012) Proteomic analysis of Bacillus thuringiensis δphaC mutant BMB171/PHB-1 reveals that the PHB synthetic pathway warrants normal carbon metabolism. J Proteom. https://doi.org/10.1016/j.jprot.2012.06.002

    Article  Google Scholar 

  40. Jing-Wen Z, Ya-Fei C, Zheng-Hong X, Zi-Niu Y, Shou-Wen C (2007) Production of thuringiensin by fed-batch culture of Bacillus thuringiensis subsp. darmstadiensis 032 with an improved pH-control glucose feeding strategy. Process Biochem. https://doi.org/10.1016/j.procbio.2006.07.017

    Article  Google Scholar 

  41. Liu X, Zuo M, Wang T, Sun Y, Liu S, Hu S, He H, Yang Q, Rang J, Quan M, Xia L, Ding X (2015) Proteomic analysis of the influence of Cu2+ on the crystal protein production of Bacillus thuringiensis X022. Cell Fact, Microb. https://doi.org/10.1186/s12934-015-0339-9

    Book  Google Scholar 

  42. Kraemer-Schafhalter A, Moser A (1996) Kinetic study of Bacillus thuringiensis var. israelensis in lab-scale batch process. Bioprocess Eng 14:139–144

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support of the Universidad Autónoma Metropolitana for this research. We also thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the fellowship granted to J. Lima-Pérez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio Loera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima-Pérez, J., López-Pérez, M., Viniegra-González, G. et al. Solid-state fermentation of Bacillus thuringiensis var kurstaki HD-73 maintains higher biomass and spore yields as compared to submerged fermentation using the same media. Bioprocess Biosyst Eng 42, 1527–1535 (2019). https://doi.org/10.1007/s00449-019-02150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02150-5

Keywords

Navigation