Skip to main content

Advertisement

Log in

Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, Pavlova lutheri, Chlorella vulgaris, and Porphyridium cruentum were cultured using modified F/2 media in a 1 L flask culture. Various nitrate concentrations were tested to determine an optimal nitrate concentration for algal growth. Subsequently, the effect of light emitted at a specific wavelength on biomass and lipid production by three microalgae was evaluated using various wavelengths of light-emitting diodes (LED). Biomass production by P. lutheri, C. vulgaris, and P. cruentum were the highest with blue, red, and green LED wavelength with 1.09 g dcw/L, 1.23 g dcw/L, and 1.28 g dcw/L on day 14, respectively. Biomass production was highest at the complementary LED wavelength to the color of microalgae. Lipid production by P. lutheri, C. vulgaris, and P. cruentum were the highest with yellow, green, and red LEDs’ wavelength, respectively. Eicosapentaenoic acid production by P. lutheri, C. vulgaris, and P. cruentum was 10.35%, 10.14%, and 14.61%, and those of docosahexaenoic acid were 6.09%, 8.95%, and 11.29%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Su KP, Huang SY, Chiu TH, Huang KC, Huang CL, Chang HC, Pariante CM (2008) Focus on women’s mental health omega-3 fatty acids for major depressive disorder during pregnancy: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 69:644–651

    Article  CAS  PubMed  Google Scholar 

  2. Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  CAS  PubMed  Google Scholar 

  3. Dunstan JA, Mitoulas LR, Dixon G, Doherty DA, Hartmann PE, Simmer K, Prescott SL (2007) The effects of fish oil supplementation in pregnancy on breast milk fatty acid composition over the course of lactation: a randomized controlled trial. Pediatr Res 62:689–694

    Article  CAS  PubMed  Google Scholar 

  4. Swanson D, Block R, Mousa SA (2012) Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr 3:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400

    Article  CAS  PubMed  Google Scholar 

  6. Sirisuk P, Sunwoo I, Kim SH, Awah CC, Ra CH, Kim JM, Jeong GT, Kim SK (2018) Enhancement of biomass, lipids, and polyunsaturated fatty acid (PUFA) production in Nannochloropsis oceanica with a combination of single wavelength light emitting diodes (LEDs) and low temperature in a three-phase culture system. Bioresour Technol 270:504–511

    Article  CAS  PubMed  Google Scholar 

  7. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169

    Article  CAS  Google Scholar 

  8. Wu W, Wang PH, Lee DJ, Chang JS (2017) Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions. Appl Energy 197:63–82

    Article  CAS  Google Scholar 

  9. Shimizu Y (1996) Microalgal: a new perspective. Annu Rev Microbiol 50:431–465

    Article  CAS  PubMed  Google Scholar 

  10. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    Article  CAS  Google Scholar 

  11. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  PubMed  Google Scholar 

  12. Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenh Gas Control 10:456–469

    Article  CAS  Google Scholar 

  13. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  PubMed  Google Scholar 

  14. Teo CL, Atta M, Bukhari A, Taisir M, Yusuf AM, Idris A (2014) Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresour Technol 162:38–44

    Article  CAS  PubMed  Google Scholar 

  15. Chen W, Sommerfeld M, Hu Q (2011) Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol 102:135–141

    Article  CAS  PubMed  Google Scholar 

  16. Renaud SM, Thinh L-V, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  17. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165

    Article  CAS  PubMed  Google Scholar 

  18. Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  PubMed  Google Scholar 

  19. Takagi M, Karseno Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  PubMed  Google Scholar 

  20. Wahidin S, Idris A, Shaleh SRM (2013) The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour Technol 129:7–11

    Article  CAS  PubMed  Google Scholar 

  21. Ra CH, Kang CH, Jung JH, Jeong GT, Kim SK (2016) Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresour Technol 212:254–261

    Article  CAS  PubMed  Google Scholar 

  22. Yan C, Zhao Y, Zheng Z, Luo X (2013) Effects of various LED light wavelengths and light intensity supply strategies on synthetic high-strength wastewater purification by Chlorella vulgaris. Biodegradation 24:721–732

    Article  CAS  PubMed  Google Scholar 

  23. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and detonula confervacea (cleve) gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  24. Lananan F, Jusoh A, Ali N, Lam SS, Endut A (2013) Effect of conway medium and f/2 medium on the growth of six genera of South China Sea marine microalgae. Bioresour Technol 141:75–82

    Article  CAS  PubMed  Google Scholar 

  25. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. Prog Ind Microbiol 35:313–321

    Article  Google Scholar 

  26. Collos Y, Mornet F, Sciandra A, Waser N, Larson A, Harrison PJ (1999) An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. J Appl Phycol 11:179–184

    Article  Google Scholar 

  27. Maksimova IV, Matorin DN, Plekhanov SE, Vladimirova MG, Volgin SL, Maslova IP (2000) Optimization of maintenance conditions for some microforms of red algae in collections. Russ J Plant Physiol 47:779–785

    Article  CAS  Google Scholar 

  28. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Biochem Physiol 37:911–917

    CAS  Google Scholar 

  29. Dhup S, Dhawan V (2014) Effect of nitrogen concentration on lipid productivity and fatty acid composition of Monoraphidium sp. Bioresour Technol 152:572–575

    Article  CAS  PubMed  Google Scholar 

  30. Jung JH, Sirisuk P, Ra CH, Kim JM, Jeong GT, Kim SK (2019) Effects of green LED light and three stresses on biomass and lipid accumulation with two-phase culture of microalgae. Process Biochem 77:93–99

    Article  CAS  Google Scholar 

  31. Jeanfils J, Canisius M-F, Burlion N (1993) Effect of high nitrate concentrations on growth and nitrate uptake by free-living and immobilized Chlorella vulgaris cells. J Appl Phycol 5:369–374

    Article  CAS  Google Scholar 

  32. Ra CH, Kang CH, Jung JH, Jeong GT, Kim SK (2016) Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs). Bioresour Technol 218:1279–1283

    Article  CAS  PubMed  Google Scholar 

  33. Bruno T, Svoronos P, Svoronos PDN (2005) CRC handbook of fundamental spectroscopic correlation charts. CRC Press, Cambridge

    Book  Google Scholar 

  34. Costa B, Jungandreas A, Jakob T, Weisheit W, Mittag M, Wilhelm C (2013) Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J Exp Bot 64:483–493

    Article  CAS  Google Scholar 

  35. Kosakowska A, Lewandowska J, Stoń J, Burkiewicz K (2004) Qualitative and quantitative composition of pigments in Phaeodactylum tricornutum (Bacillariophyceae) stressed by iron. Biometals 17:45–52

    Article  CAS  PubMed  Google Scholar 

  36. Kubín Š, Borns E, Doucha J, Seiss U (1983) Light absorption and production rate of Chlorella vulgaris in light of different spectral composition. Biochem und Physiol der Pflanz 178:193–205

    Article  Google Scholar 

  37. Coward T, Fuentes-Grünewald C, Silkina A, Oatley-Radcliffe DL, Llewellyn G, Lovitt RW (2016) Utilising light-emitting diodes of specific narrow wavelengths for the optimization and co-production of multiple high-value compounds in Porphyridium purpureum. Bioresour Technol 221:607–615

    Article  CAS  PubMed  Google Scholar 

  38. Guihéneuf F, Stengel DB (2015) Towards the biorefinery concept: interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum. Algal Res 10:152–163

    Article  Google Scholar 

  39. Severes A, Hegde S, D’Souza L, Hegde S (2017) Use of light emitting diodes (LEDs) for enhanced lipid production in micro-algae based biofuels. J Photochem Photobiol B Biol 170:235–240

    Article  CAS  Google Scholar 

  40. Duarte JH, de Souza CO, Druzian JI, Costa JAV (2019) Light emitting diodes applied in Synechococcus nidulans cultures: effect on growth, pigments production and lipid profiles. Bioresour Technol 280:511–514

    Article  CAS  PubMed  Google Scholar 

  41. Chen B, Wan C, Mehmood MA, Chang JS, Bai F, Zhao X (2017) Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review. Bioresour Technol 244:1198–1206

    Article  CAS  PubMed  Google Scholar 

  42. Shin YS, Il Choi H, Choi JW, Lee JS, Sung YJ, Sim SJ (2018) Multilateral approach on enhancing economic viability of lipid production from microalgae: a review. Bioresour Technol 258:335–344

    Article  CAS  PubMed  Google Scholar 

  43. Roscher E, Zetsche K (1986) The effects of light quality and intensity on the synthesis of ribulose-l,5-bisphosphate carboxylase and its mRNAs in the green alga Chlorogonium elongatum. Planta 167:582–586

    Article  CAS  PubMed  Google Scholar 

  44. Lucas-Salas LM, Castrillo M, Martínez D (2013) Effects of dilution rate and water reuse on biomass and lipid production of Scenedesmus obliquus in a two-stage novel photobioreactor. Bioresour Technol 143:344–352

    Article  CAS  PubMed  Google Scholar 

  45. Ramos MJ, Fernández CM, Casas A, Rodriguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  CAS  PubMed  Google Scholar 

  46. Knothe G, Matheaus AC, Ryan TW (2003) Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82:971–975

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was a part of the project titled ‘Innovative marine production technology driven by LED-ICT convergence photo-biology (D11506419H480000110)’, funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Koo Kim.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Sunwoo, I.Y., Hong, H.J. et al. Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Bioprocess Biosyst Eng 42, 1517–1526 (2019). https://doi.org/10.1007/s00449-019-02149-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02149-y

Keywords

Navigation