Skip to main content
Log in

Optimization of polyhydroxybutyrate production by experimental design of combined ternary mixture (glucose, xylose and arabinose) and process variables (sugar concentration, molar C:N ratio)

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Conversion of lignocellulosic feedstocks to polyhydroxybutyrate (PHB) could make lignocellulosic biorefineries more profitable and sustainable. Glucose, xylose and arabinose are the main sugars derived from pretreatment and hydrolysis of herbaceous feedstocks. Burkholderia sacchari DSM 17165 is a bacterium that can convert these sugars into PHB. However, the effects of sugar ratio, sugar concentration, and molar C:N ratio on PHB production have not been studied. In this study, a seven-run mixture design for sugar ratio combined with a 32 full factorial design for process variables was performed to optimize PHB production. A polynomial model was built based on experimental data, and optimum conditions for different sugar streams were derived and validated. The highest PHB production (3.81 g/L) was achieved with arabinose at a concentration of 25.54 g/L and molar C:N ratio of 74.35. Results provide references for manipulation of sugar mixture and process control to maximize PHB production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aramvash A, Moazzeni Zavareh F, Gholami Banadkuki N (2018) Comparison of different solvents for extraction of polyhydroxybutyrate from Cupriavidus necator. Eng Life Sci 18(1):20–28

    Article  CAS  Google Scholar 

  2. Koller M (2018) Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious Microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 23(2):362

    Article  Google Scholar 

  3. Tokiwa Y, Calabia BP (2004) Review degradation of microbial polyesters. Biotechnol Lett 26(15):1181–1189

    Article  CAS  Google Scholar 

  4. Kessler B, Witholt B (2001) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol 86(2):97–104. https://doi.org/10.1016/S0168-1656(00)00404-1

    Article  CAS  PubMed  Google Scholar 

  5. Carpine R, Raganati F, Olivieri G, Hellingwerf KJ, Pollio A, Salatino P, Marzocchella A (2018) Poly-β-hydroxybutyrate (PHB) production by Synechocystis PCC6803 from CO2: model development. Algal Res 29:49–60

    Article  Google Scholar 

  6. Singh AK, Sharma L, Mallick N, Mala J (2017) Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. J Appl Phycol 29(3):1213–1232

    Article  CAS  Google Scholar 

  7. Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—prospects and challenges. Algal Res 2(2):79–97

    Article  Google Scholar 

  8. Platts SPG (2019) S&P global platts petrochemical index (PGPI). Accessed 09 April 2019

  9. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619. https://doi.org/10.1016/j.procbio.2004.01.053

    Article  CAS  Google Scholar 

  10. Mozumder MSI, Garcia-Gonzalez L, De Wever H, Volcke EIP (2015) Effect of sodium accumulation on heterotrophic growth and polyhydroxybutyrate (PHB) production by Cupriavidus necator. Bioresour Technol 191:213–218. https://doi.org/10.1016/j.biortech.2015.04.110

    Article  CAS  PubMed  Google Scholar 

  11. Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51(1):13–21

    Article  CAS  Google Scholar 

  12. Saratale RG, Saratale GD, Cho SK, Kim DS, Ghodake GS, Kadam A, Kumar G, Bharagava RN, Banu R, Shin HS (2019) Pretreatment of kenaf (Hibiscus cannabinus L.) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization. Bioresour Technol 282:75–80. https://doi.org/10.1016/j.biortech.2019.02.083

    Article  CAS  PubMed  Google Scholar 

  13. Gorenflo V, Schmack G, Vogel R, Steinbuchel A (2001) Development of a process for the biotechnological large-scale production of 4-hydroxyvalerate-containing polyesters and characterization of their physical and mechanical properties. Biomacromol 2(1):45–57

    Article  CAS  Google Scholar 

  14. Al-Kaisi MM, Guzman JG (2013) Effects of tillage and nitrogen rate on decomposition of transgenic Bt and near-isogenic non-Bt maize residue. Soil Tillage Res 129:32–39

    Article  Google Scholar 

  15. Saratale GD, Saratale RG, Chang J-S (2013) Biohydrogen from renewable resources. In: Pandey A, Chang J-S, Hallenbecka PC, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 185–221. https://doi.org/10.1016/B978-0-444-59555-3.00009-X

    Chapter  Google Scholar 

  16. Hamalainen J, Granstrom T, Mollerup F, Wang Y, Xiong H, Turunen O (2016) Effect of enzymatic high temperature prehydrolysis on the subsequent cellulose hydrolysis of steam-pretreated spruce in high solids concentration. J Chem Technol Biotechnol 91(6):1844–1852

    Article  Google Scholar 

  17. He Y-C, Jiang C-X, Chong G-G, Di J-H, Wu Y-F, Wang B-Q, Xue X-X, Ma C-L (2017) Chemical-enzymatic conversion of corncob-derived xylose to furfuralcohol by the tandem catalysis with SO4 2−/SnO2− kaoline and E. coli CCZU-T15 cells in toluene–water media. Bioresour Technol 245:841–849

    Article  CAS  Google Scholar 

  18. Heng KS, Hatti-Kaul R, Adam F, Fukui T, Sudesh K (2017) Conversion of rice husks to polyhydroxyalkanoates (PHA) via a three-step process: optimized alkaline pretreatment, enzymatic hydrolysis, and biosynthesis by Burkholderia cepacia USM (JCM 15050). J Chem Technol Biotechnol 92(1):100–108

    Article  CAS  Google Scholar 

  19. Liu K, Atiyeh HK, Pardo-Planas O, Ezeji TC, Ujor V, Overton JC, Berning K, Wilkins MR, Tanner RS (2015) Butanol production from hydrothermolysis-pretreated switchgrass: quantification of inhibitors and detoxification of hydrolyzate. Bioresour Technol 189:292–301. https://doi.org/10.1016/j.biortech.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  20. Obruca S, Benesova P, Petrik S, Oborna J, Prikryl R, Marova I (2014) Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochem 49(9):1409–1414

    Article  CAS  Google Scholar 

  21. Roberto IC, Felipe MG, de Mancilha IM, Vitolo M, Sato S, Da Silva SS (1995) Xylitol production by Candida guilliermondii as an approach for the utilization of agroindustrial residues. Bioresour Technol 51(2–3):255–257

    Article  CAS  Google Scholar 

  22. Saha BC, Qureshi N, Kennedy GJ, Cotta MA (2015) Enhancement of xylose utilization from corn stover by a recombinant Escherichia coli strain for ethanol production. Bioresour Technol 190:182–188

    Article  CAS  Google Scholar 

  23. Silva L, Taciro M, Ramos MM, Carter J, Pradella J, Gomez J (2004) Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind Microbiol Biotechnol 31(6):245–254

    Article  CAS  Google Scholar 

  24. Saratale RG, Shin HS, Ghodake GS, Kumar G, Oh MK, Saratale GD (2018) Combined effect of inorganic salts with calcium peroxide pretreatment for kenaf core biomass and their utilization for 2,3-butanediol production. Bioresour Technol 258:26–32. https://doi.org/10.1016/j.biortech.2018.02.115

    Article  CAS  PubMed  Google Scholar 

  25. Saratale GD, Saratale RG, Kim SH, Kumar G (2018) Screening and optimization of pretreatments in the preparation of sugarcane bagasse feedstock for biohydrogen production and process optimization. IJHE 43(25):11470–11483. https://doi.org/10.1016/j.ijhydene.2018.01.187

    Article  CAS  Google Scholar 

  26. Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11(2):187–198. https://doi.org/10.1016/S0958-1669(00)00085-9

    Article  CAS  PubMed  Google Scholar 

  27. Cesario MT, Raposo RS, De Almeida MCM, Van Keulen F, Ferreira BS, Da Fonseca MMR (2014) Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnol 31(1):104–113

    Article  CAS  Google Scholar 

  28. Silva LF, Taciro MK, Raicher G, Piccoli RAM, Mendonca TT, Lopes MSG, Gomez JGC (2014) Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol. Int J Biol Macromol 71:2–7

    Article  CAS  Google Scholar 

  29. Bramer CO, Vandamme P, Da Silva LF, Gomez J, Steinbuchel A (2001) Polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int J Syst Evol Microbiol 51(5):1709–1713

    Article  CAS  Google Scholar 

  30. Lopes MSG, Gosset G, Rocha RCS, Gomez JGC, Da Silva LF (2011) PHB biosynthesis in catabolite repression mutant of Burkholderia sacchari. Curr Microbiol 63(4):319

    Article  CAS  Google Scholar 

  31. Saratale GD, Oh M-K (2015) Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. Int J Biol Macromol 80:627–635. https://doi.org/10.1016/j.ijbiomac.2015.07.034

    Article  CAS  PubMed  Google Scholar 

  32. Cornell JA (2011) The inclusion of process variables in mixture experiments. In: Bloomfield P, Cressie NAC, Fisher NI et al (eds) Experiments with mixtures: designs, models, and the analysis of mixture data, vol 403. Wiley, New York, pp 354–437

    Chapter  Google Scholar 

  33. Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75(4):907–914

    Article  CAS  Google Scholar 

  34. Xiao H, Gu Y, Ning Y, Yang Y, Mitchell WJ, Jiang W, Yang S (2011) Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl Environ Microbiol 77(22):7886–7895

    Article  CAS  Google Scholar 

  35. Ramsay B, Lomaliza K, Chavarie C, Dube B, Bataille P, Ramsay J (1990) Production of poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acids. Appl Environ Microbiol 56(7):2093–2098

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Scheffe H (1958) Experiments with mixtures. J R Stat Soc Ser B (Stat Method) 20:344–360

    Google Scholar 

  37. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models. Operations and decision sciences, vol 4. Irwin Chicago, New York

    Google Scholar 

  38. Sreeraj P, Kannan T, Maji S (2013) Prediction and optimization of weld bead geometry in gas metal arc welding process using RSM and fmincon. J Mech Eng Res 5(8):154–165

    Article  Google Scholar 

  39. Liou J-Y, Ting C-K, Teng W-N, Mandell M, Tsou M-Y (2018) Adaptation of non-linear mixed amount with zero amount response surface model for analysis of concentration-dependent synergism and safety with midazolam, alfentanil, and propofol sedation. Br J Anaesth 120(6):1209–1218

    Article  CAS  Google Scholar 

  40. Chen M-J, Chen K-N, Lin C-W (2005) Optimization on response surface models for the optimal manufacturing conditions of dairy tofu. J Food Eng 68(4):471–480

    Article  Google Scholar 

  41. Nocedal J, Wright SJ (2006) Sequential quadratic programming. In: Mikosch TV, Resnick SI, Robinson SM (eds) Numerical optimization. Springer series in operations research and financial engineering, 2nd edn. Springer, New York

    Google Scholar 

  42. Rentizelas AA, Tatsiopoulos IP (2010) Locating a bioenergy facility using a hybrid optimization method. Int J Prod Econ 123(1):196–209. https://doi.org/10.1016/j.ijpe.2009.08.013

    Article  Google Scholar 

  43. Ugray Z, Lasdon L, Plummer J, Glover F, Kelly J, Marti R (2007) Scatter search and local NLP solvers: a multistart framework for global optimization. INFORMS J Comput 19(3):328–340

    Article  Google Scholar 

  44. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700. https://doi.org/10.1016/j.procbio.2005.04.006

    Article  CAS  Google Scholar 

  45. Saha BC, Qureshi N, Kennedy GJ, Cotta MA (2016) Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeterior Biodegrad 109:29–35. https://doi.org/10.1016/j.ibiod.2015.12.020

    Article  CAS  Google Scholar 

  46. Gaspar M, Kalman G, Reczey K (2007) Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem 42(7):1135–1139. https://doi.org/10.1016/j.procbio.2007.04.003

    Article  CAS  Google Scholar 

  47. Samala A, Srinivasan R, Yadav MP, Kim T-J, Prewitt L (2012) Xylo-oligosaccharides production by autohydrolysis of corn fiber separated from DDGS. BioResources 7(3):3038–3050

    Google Scholar 

  48. Noureddini H, Byun J (2010) Dilute-acid pretreatment of distillers’ grains and corn fiber. Bioresour Technol 101(3):1060–1067. https://doi.org/10.1016/j.biortech.2009.08.094

    Article  CAS  PubMed  Google Scholar 

  49. Pan W, Nomura CT, Nakas JP (2012) Estimation of inhibitory effects of hemicellulosic wood hydrolysate inhibitors on PHA production by Burkholderia cepacia ATCC 17759 using response surface methodology. Bioresour Technol 125:275–282

    Article  CAS  Google Scholar 

  50. Dai J, Gliniewicz K, Settles ML, Coats ER, McDonald AG (2015) Influence of organic loading rate and solid retention time on polyhydroxybutyrate production from hybrid poplar hydrolysates using mixed microbial cultures. Bioresour Technol 175:23–33. https://doi.org/10.1016/j.biortech.2014.10.049

    Article  CAS  PubMed  Google Scholar 

  51. Braunegg G, Sonnleitner B, Lafferty R (1978) A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6(1):29–37

    Article  CAS  Google Scholar 

  52. Kalaiyezhini D, Ramachandran K (2015) Biosynthesis of poly-3-hydroxybutyrate (PHB) from glycerol by Paracoccus denitrificans in a batch bioreactor: effect of process variables. Prep Biochem Biotechnol 45(1):69–83

    Article  CAS  Google Scholar 

  53. Garcia-Torreiro M, Lu-Chau TA, Lema JM (2016) Effect of nitrogen and/or oxygen concentration on poly (3-hydroxybutyrate) accumulation by Halomonas boliviensis. Bioprocess Biosyst Eng 39(9):1365–1374

    Article  Google Scholar 

  54. Raposo RS, De Almeida MCM, De Oliveira MdCM, Da Fonseca MM, Cesario MT (2017) A Burkholderia sacchari cell factory: production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures. New Biotechnol 34:12–22

    Article  CAS  Google Scholar 

  55. Rodriguez-Contreras A, Koller M, Miranda-de Sousa Dias M, Calafell-Monfort M, Braunegg G, Marques-Calvo MS (2015) Influence of glycerol on poly(3-hydroxybutyrate) production by Cupriavidus necator and Burkholderia sacchari. Biochem Eng J 94:50–57. https://doi.org/10.1016/j.bej.2014.11.007

    Article  CAS  Google Scholar 

  56. Liu Z, Ying Y, Li F, Ma C, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37(5):495–501

    Article  CAS  Google Scholar 

  57. Hamalainen J, Granstrom T, Mollerup F, Wang Y, Xiong H, Turunen O (2016) Effect of enzymatic high temperature prehydrolysis on the subsequent cellulose hydrolysis of steam-pretreated spruce in high solids concentration. J Chem Technol Biotechnol 91(6):1844–1852

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Nebraska Agricultural Research Division for funding this research, Dr. Patrick Ballmann at PFI Biotechnology, Germany, for providing the medium formulation, Dr. Sibel Irmak and Mr. David Cassada at UNL for helping set up the GC–MS analysis method and Dr. Bo Yuan at UNL for helping with the SAS coding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Wilkins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Eskridge, K.M. & Wilkins, M.R. Optimization of polyhydroxybutyrate production by experimental design of combined ternary mixture (glucose, xylose and arabinose) and process variables (sugar concentration, molar C:N ratio). Bioprocess Biosyst Eng 42, 1495–1506 (2019). https://doi.org/10.1007/s00449-019-02146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02146-1

Keywords

Navigation