Skip to main content
Log in

Kinetic modeling, recovery, and molecular characterization of poly-beta-hydroxybutyrate polymer in Acinetobacter baumannii isolate P39

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

To control the poly-β-hydroxybutyrate (PHB) biopolymer production by Acinetobacter baumannii isolate P39 kinetic modeling of the fermentation process, polymer downstream processing, enzymological analysis, and molecular characterization of PHA synthase, key biosynthetic enzyme, should be addressed. A. baumannii isolate P39 produced 0.15 g/L PHB after 24 h of incubation with a polymer content of 28% per dry weight. Logistic and Leudeking–Piret models were used for describing cell growth and PHB production, respectively. They showed good agreement with the experimental data describing both cell growth and PHB production (average regression coefficient r2:0.999). The growth-associated production of PHB biopolymer as an electron acceptor was confirmed using Leudeking–Piret model and victim substrate experiment. The best method of recovery of PHB biopolymer was chemical digestion using sodium hypochlorite, since it produced the largest amount of polymer and highest molecular weight (16,000 g/mole) in comparison to other recovery methods. DTNB assay showed high activity of PHA synthase enzyme, 600 U activity, and 153.8 U/mg specific activity. Molecular analysis of PHA synthase enzyme confirmed class III identity. Taken together, micelle model was proposed for polyhydroxybutyrate formation in A. baumannii isolate P39.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Laycock B, Halley P, Pratt S et al (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583

    Article  CAS  Google Scholar 

  2. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polym Lett 8:791–808

    Article  Google Scholar 

  3. CastIllo F, Valera R, Ramos G, Berraquero R (1986) Accumulation of poly(b-hydroxybutyrate) by halobacteria. Appl Environ Microbiol 51:214–216

    Google Scholar 

  4. Manna A, Banerjee R, Paul A (1999) Accumulation of poly (3-hydroxybutyric acid) by some soil Streptomyces. Curr Microbiol 39:153–158

    Article  CAS  PubMed  Google Scholar 

  5. Lee SY, Chang HN (1995) Production of poly(hydroxyalkanoic acid). Adv Biochem Eng Biotechnol 52:28–58

    Google Scholar 

  6. Ackermann J, Babel W (1997) Growth-associated synthesis of poly(hydroxybutyric acid) in Methylobacterium rhodesianum as an expression of an internal bottleneck. Appl Microbiol Biotechnol 47:144–149

    Article  CAS  Google Scholar 

  7. Page W, Knosp O (1989) Hyperproduction of poly-3-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 55:1334–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rao MG, Bharathi P, Akila R (2014) A comprehensive review on biopolymers. Sci Revs Chem Commun: 6:61–68

    Google Scholar 

  9. Pfeiffer D, Jendrossek D (2014) PhaM Is the physiological activator of poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) in Ralstonia eutropha. Appl Environ Microbiol 80:555–563

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim J, Kim Y-J, Choi SY et al (2017) Crystal structure of Ralstonia eutropha polyhydroxyalkanoate synthase C-terminal domain and reaction mechanisms. Biotechnol J 12:1–12

    Google Scholar 

  11. Wittenborn E, Jost M, Wei Y et al (2016) Structure of the catalytic domain of the class I polyhydroxybutyrate synthase from Cupriavidus necator. J Biol Chem 291:1–24

    Article  Google Scholar 

  12. Rehm B (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Madison L, Huisman G (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Elsayed NS, Aboshanab KM, Aboulwafa M, Hassouna N (2016) Cost-effective production of the bio-plastic poly-B-hydroxybutyrate using Acinetobacter baumannii isolate P39. J Microbiol Biotechnol Food Sci 5:552–556

    Article  CAS  Google Scholar 

  15. Elsayed N, Aboshanab KM, Aboulwafa MM, Hassouna NA (2013) PHB production in Azomonas, Acinteobacter and Bacillus species: isolation, screening and identification. Arch Clin Microbiol 4:1–8

    Google Scholar 

  16. Sekar K, Tyo K (2015) Regulatory effects on central carbon metabolism from poly-3-hydroxybutryate synthesis. Metab Eng 28:180–189

    Article  CAS  PubMed  Google Scholar 

  17. Law J, Slepecky R (1961) Assay of poly-beta-hydroxybutyric acid. J Bacteriol 82:33–36

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Leitermann F, Syldatk C, Hausmann R (2008) Fast quantitative determination of microbial rhamnolipids from cultivation broths by ATR-FTIR spectroscopy. J Biol Eng 2:13

    Article  PubMed  PubMed Central  Google Scholar 

  19. Abid S, Raza ZA, Hussain T (2016) Production kinetics of polyhydroxyalkanoates by using Pseudomonas aeruginosa gamma ray mutant strain EBN-8 cultured on soybean oil. Biotech J 6:1–10

    CAS  Google Scholar 

  20. Pirouz F, Ardjmand M, Baei M (2011) kinetics evaluation of cell growth and PHB production by Azotobacter beijerinckii DSMZ 1014. World Appl Sci J 14:392–397

    CAS  Google Scholar 

  21. Khan M, Prasad D, Abdullah H, Batcha A (2013) Kinetic analysis on cell growth and biosynthesis of poly (3-hydroxybutyrate) (PHB) in Cupriavidus Necator H16. Int J Biosci Biochem Bioinform 3:516–519

    CAS  Google Scholar 

  22. Thierie J (2013) Computing and interpreting specific production rates in a chemostat in steady state according to the luedeking-piret model. Appl Biochem Biotechnol 169:477–492

    Article  CAS  PubMed  Google Scholar 

  23. Dhanasekar R, Viruthagiri T, Sabarathinam P (2003) Poly(3-hydroxy butyrate) synthesis from a mutant strain Azotobacter vinelandii utilizing glucose in a batch reactor. Biochem Eng J 16:1–8

    Article  CAS  Google Scholar 

  24. Penlogloua G, Chatzidoukas C, Kiparissides C (2011) Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modeling approach and experimental validation. Biotechnol Adv 30:329–337

    Article  Google Scholar 

  25. Hahn S, Chang Y, Kim B, Chang HN (1994) Optimization of microbial poly(3-hydroxybutyrate) recovery using dispersions of sodium hypochlorite solution and chloroform. Biotechnol Bioeng 44:256–261

    Article  CAS  PubMed  Google Scholar 

  26. Ibrahim M, Steinbuchel A (2009) Poly(3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Appl Environ Microbiol 75:6222–6231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanchez R, Schripsema J, da Silva L et al (2003) Medium-chain-length polyhydroxyalkanoic acids (PHAmcl) produced by Pseudomonas putida IPT 046from renewable sources. Eur Polymer J 39:1385–1394

    Article  CAS  Google Scholar 

  28. Agus J, Kahar P, Hyakutake M et al (2010) Unusual change in molecular weight of polyhydroxyalkanoate (PHA) during cultivation of PHA-accumulating Escherichia coli. Polym Degrad Stab 95:2250–2254

    Article  CAS  Google Scholar 

  29. Simon-Colin C, Gouina C, Lemechko P et al (2012) Biosynthesis and characterization of polyhydroxyalkanoates by Pseudomonas guezennei from alkanoates and glucose. Int J Biol Macromol 51:1063–1069

    Article  CAS  PubMed  Google Scholar 

  30. Martinez V, Herencias C, Jurkevitch E, Prieto A (2016) Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Scientific reports 6:24381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gerngross T, Snell KD, Peoples O, Sinskey A (1994) Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry 33:931 1–9320

    Article  CAS  Google Scholar 

  32. Sim SJ, Snell KD, Hogan SA et al (1997) PHA synthase activity controls molecular weight and polydisperisity of polyhydroxybutyrate in vivo. Nature Biotechnol 15:63–67

    Article  CAS  Google Scholar 

  33. Bhubalan K, Chuah J, Shozui F et al (2011) Characterization of the highly active PHA synthase 1 of Chromobacterium sp. USM2. Appl Environ Microbiol 77:2926–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hezyan F, Steinbuchel A, Rehm B (2002) Biochemical and enzymological properties of the polyhydroxybutyrate synthase from the extremely halophilic archaeon strain 56. Arch Biochem Biophys 403:284–291

    Article  Google Scholar 

  35. Lowry H, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  36. Staden R (1996) The staden sequence analysis package. Mol Biotechnol 5:233–241

    Article  CAS  PubMed  Google Scholar 

  37. Ishikawa J, Hotta K (1999) FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol Lett 174:251–253

    Article  CAS  PubMed  Google Scholar 

  38. Wahab H, Khairudin N, Samian M, Najimudin N (2006) Sequence analysis and structure prediction of type II Pseudomonas sp. USM 4–55 PHA synthase and an insight into its catalytic mechanism. BMC Struct Biol 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jiang X, Luo X, Zhou N-Y (2015) Two polyhydroxyalkanoate synthases from distinct classes from the aromatic degrader Cupriavidus pinatubonensis JMP134 exhibit the same substrate preference. Plos one 10:11

    Google Scholar 

  40. Mizianty M, Kurgan L (2009) Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences. BMC Bioinform 10:414

    Article  Google Scholar 

  41. Jia Y, Kappock J, Frick T et al (2000) Lipases provide a new mechanistic model for polyhydroxybutyrate (PHB) synthases: characterization of the functional residues in Chromatium Vinosum PHB synthase. Biochemistry 39:3927–3936

    Article  CAS  PubMed  Google Scholar 

  42. Muangwong A, Boontip T, Pachimsawat J, Napathorn S (2016) Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol. Microb Cell Factories 15:55

    Article  Google Scholar 

  43. Rees G, Vasiliadis G, May J, Bayly R (1993) Production of poly-β-hydroxybutyrate in Acinetobacter spD, isolated from activated sludge. Appl Microbiol Biotechnol 38:734–737

    Article  CAS  Google Scholar 

  44. Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21

    Article  CAS  Google Scholar 

  45. Novak M, Koller M, Braunegg G, Horvat P (2015) Mathematical modeling as a tool for optimized PHA production. Chem Biochem Eng Q 29:183–220

    Article  CAS  Google Scholar 

  46. Babel W, Brinkmann U, Muller R (1993) The auxiliary substrate concept—an approach for overcoming limits of microbial performances. Acta Biotechnol 13:211–243

    Article  CAS  Google Scholar 

  47. Sayyed R, Gangurde N, Chincholkar S (2009) Hypochlorite digestion method for effi cient recovery of PHB from Alcaligenes faecalis. Indian J Microbiol 49:230–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heinrich D, Madkour M, Al-Ghamdi M et al (2012) Large scale extraction of poly(3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite. AMB Express 2:2–6

    Article  Google Scholar 

  49. Penlogloua G, Kretza E, Chatzidoukasa C et al (2012) On the control of molecular weight distribution of polyhydroxybutyrate in Azohydromonas lata cultures. Biochem Eng J 62:39–47

    Article  Google Scholar 

  50. Kapritchkoff F, Viotti A, Alli R et al (2006) Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha. J Biotechnol 122:453–462

    Article  CAS  PubMed  Google Scholar 

  51. Tsuge T (2016) Fundamental factors determining the molecular weight of polyhydroxyalkanoate during biosynthesis. Polym J 48:1051–1057

    Article  CAS  Google Scholar 

  52. Zhu C, Nomura C, Perrotta J et al (2010) Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog 26:424–430

    CAS  PubMed  Google Scholar 

  53. Ashby R, Solaiman DY, Strahan G (2011) Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers. J Am Oil Chem Soc 88:949–959

    Article  CAS  Google Scholar 

  54. Murty R, Bhat J, Muniswaran P (2002) Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnol Bioprocess Eng 7:57–66

    Article  CAS  Google Scholar 

  55. Shishatskaya E, Goreva A, Kalacheva G, Volova T (2011) Biocompatibility and resorption of intravenously administered polymer microparticles in tissues of internal organs of laboratory animals. J Biomater Sci 22:2185–2203

    Article  CAS  Google Scholar 

  56. Medvecky L, Giretova M, Stulajterova R (2014) Properties and in vitro characterization of polyhydroxybutyrate chitosan scaffolds prepared by modified precipitation method. J Mater Sci Mater Med 25:777–789

    Article  CAS  PubMed  Google Scholar 

  57. Jindal P, Tiwari D (2013) Biosynthesis of PHA and it’s copolymers—a review. Int J Sci Eng Res 4:501–507

    Google Scholar 

  58. Amara A, Steinbüchel A, Rehm B (2002) In vivo evolution of the 12 Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and 13 characterization of modified PHA synthases with enhanced activity. Appl Microbiol Biotechnol 59:477–482

    Article  CAS  PubMed  Google Scholar 

  59. Tsuge T, Watanabe S, Sato S et al (2007) Variation in copolymer composition and molecular weight of polyhydroxyalkanoate generated by saturation mutagenesis of Aeromonas caviae PHA synthase. Macromol Biosci 7:846–854

    Article  CAS  PubMed  Google Scholar 

  60. Nardini M, Dijkstra B (1999) a/b Hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, for giving us all the facilities and equipments to accomplish this work. In addition, we thank Dr. Ghadir EL-Housseiny, Ph.D., for her valuable assistance in the kinetic modeling of PHB production in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Yassien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsayed, N.S., Aboshanab, K.M., Yassien, M.A. et al. Kinetic modeling, recovery, and molecular characterization of poly-beta-hydroxybutyrate polymer in Acinetobacter baumannii isolate P39. Bioprocess Biosyst Eng 41, 1779–1791 (2018). https://doi.org/10.1007/s00449-018-2000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-2000-6

Keywords

Navigation