Skip to main content
Log in

A systematic correlation analysis of carotenoids, chlorophyll, non-pigmented cell mass, and cell number for the blueprint of Dunaliella salina culture in a photobioreactor

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microalgal carotenoids are attractive health ingredients, but their production should be optimized to improve cost-effectiveness. Understanding cellular physiology centered on carotenoid synthesis is the prerequisite for this work. Therefore, systematic correlation analyses were conducted among chlorophyll, carotenoids, non-pigmented cell mass, and cell number of Dunaliella salina in a specified condition over a relatively long culture time. First, an integrated correlation was performed: a temporal profile of the carotenoids was correlated with those of other factors, including chlorophyll, non-pigmented cell mass, and cell number. Pearson and Spearman correlation analyses were performed to identify linearity and monotonicity of the correlation, respectively, and then cross-correlation was executed to determine if the correlation had a time lag. Second, to understand the cellular potential of metabolism, the procedure was repeated to provide a data set composed of the specific synthesis rates of the factors or growth rate, which additionally provided kinetic correlations among the constituting components of the cell, excluding the effect of cell number. This systematic approach could generate a blueprint model that is composed of only what it needs, which could make it possible to efficiently control and optimize the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Edge R, McGarvey DJ, Truscott TG (1997) The carotenoids as anti-oxidants—a review. J Photochem Photobiol B 41(3):189–200

    Article  CAS  PubMed  Google Scholar 

  2. Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34(8):1396–1412

    Article  CAS  PubMed  Google Scholar 

  3. Herrero M, Cifuentes A, Ibañez E (2006) Sub-and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chem 98(1):136–148

    Article  CAS  Google Scholar 

  4. Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae—a review. J Algal Biomass Util 3(4):89–100

    Google Scholar 

  5. Christaki E, Bonos E, Giannenas I, Florou-Paneri P (2013) Functional properties of carotenoids originating from algae. J Sci Food Agric 93(1):5–11

    Article  CAS  PubMed  Google Scholar 

  6. Schweiggert RM, Carle R (2016) In: Kaczor A, Baranska M (eds) Carotenoids: nutrition analysis technology, 2016 edn. Wiley, Hoboken

    Google Scholar 

  7. Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74(6):1163–1174

    Article  CAS  PubMed  Google Scholar 

  8. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70(1):313–321

    Article  CAS  Google Scholar 

  9. Richmond A (2004) Biological principles of mass cultivation. Handbook of microalgal culture: Biotechnology and applied phycology. Wiley, Blackwell, pp 125–177

    Google Scholar 

  10. Tredici MR (2004) Mass production of microalgae: photobioreactors. Handbook of microalgal culture: biotechnology and applied phycology. Weliy, Blackwell, pp 178–214

    Google Scholar 

  11. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55(3):207–216

    Article  CAS  PubMed  Google Scholar 

  12. Lu S, Li L (2008) Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integr Plant Biol 50(7):778–785

    Article  CAS  PubMed  Google Scholar 

  13. Maoka T (2011) Carotenoids in marine animals. Mar Drugs 9(2):278–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamers PP, van de Laak CC, Kaasenbrood PS, Lorier J, Janssen M, De Vos RC et al (2010) Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng 106(4):638–648

    Article  CAS  PubMed  Google Scholar 

  15. Fu W, Guðmundsson Ó, Paglia G, Herjólfsson G, Andrésson ÓS, Palsson B et al (2013) Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biotechnol 97(6):2395–2403

    Article  CAS  PubMed  Google Scholar 

  16. Lamers PP, Janssen M, De Vos RC, Bino RJ, Wijffels RH (2008) Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol 26(11):631–638

    Article  CAS  PubMed  Google Scholar 

  17. Murthy KC, Vanitha A, Rajesha J, Swamy MM, Sowmya PR, Ravishankar GA (2005) In vivo antioxidant activity of carotenoids from Dunaliella salina—a green microalga. Life Sci 76(12):1381–1390

    Article  CAS  Google Scholar 

  18. Liang C, Zhai Y, Xu D, Ye N, Zhang X, Wang Y, Zhang W, Yu J (2015) Correlation between lipid and carotenoid synthesis and photosynthetic capacity in Haematococcus pluvialis grown under high light and nitrogen deprivation stress. Grasas Aceites 66(2):077

    Google Scholar 

  19. Griffiths MJ, Garcin C, van Hille RP, Harrison ST (2011) Interference by pigment in the estimation of microalgal biomass concentration by optical density. J Microbiol Methods 85(2):119–123

    Article  CAS  PubMed  Google Scholar 

  20. Chrusciak M (2011) Modeling and integration of a closed loop system for production of SNG from microalgae. MS thesis, University of Iceland & University of Akueryri, Akueryri, Iceland

  21. Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72(3):593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu Y, Ibrahim IM, Harvey PJ (2016) The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30. Plant Physiol Biochem 106:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29(12):615–623

    Article  CAS  PubMed  Google Scholar 

  24. Cortassa S, Aon MA, Iglesias AA, Aon JC, Lloyd D (2012) An introduction to metabolic and cellular engineering. CONICET, Buenos Aires

    Google Scholar 

  25. Abu-Ghosh S, Fixler D, Dubinsky Z, Solovchenko A, Zigman M, Yehoshua Y (2015) Flashing light enhancement of photosynthesis and growth occurs when photochemistry and photoprotection are balanced in Dunaliella salina. Eur J Phycol 50(4):469–480

    Article  CAS  Google Scholar 

  26. Cowan AK, Rose PD (1991) Abscisic acid metabolism in salt-stressed cells of Dunaliella salina possible interrelationship with β-carotene accumulation. Plant Physiol 97(2):798–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mojaat M, Pruvost J, Foucault A, Legrand J (2008) Effect of organic carbon sources and Fe2+ ions on growth and β-carotene accumulation by Dunaliella salina. Biochem Eng J 39(1):177–184

    Article  CAS  Google Scholar 

  28. Ye ZW, Jiang JG, Wu GH (2008) Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol Adv 26(4):352–360

    Article  CAS  PubMed  Google Scholar 

  29. Lamers PP, Janssen M, De Vos RC, Bino RJ, Wijffels RH (2012) Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J Biotechnol 162(1):21–27

    Article  CAS  PubMed  Google Scholar 

  30. Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A et al (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol 142(4):1380–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  CAS  Google Scholar 

  32. Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29(5):483–501

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was a part of the project titled ‘Development of integrated technologies for developing biomaterials using by magma seawater’, funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa Sung Shin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H.G., Byeon, S.Y., Chung, G.Y. et al. A systematic correlation analysis of carotenoids, chlorophyll, non-pigmented cell mass, and cell number for the blueprint of Dunaliella salina culture in a photobioreactor. Bioprocess Biosyst Eng 41, 1295–1303 (2018). https://doi.org/10.1007/s00449-018-1957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1957-5

Keywords

Navigation