Skip to main content

Advertisement

Log in

Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12–0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABE:

Acetone, butanol, and ethanol

DE:

Double-effect

FABE :

Production flow of ABE (kg/h)

HS :

Energy consumption of the separation (MJ/kg-ABE)

IRC:

Investment cost of recovery ($/kg-ABE)

LHV:

Lower heating value of solvents (MJ/kg-ABE)

M&S:

Marshall and Swift equipment cost index

ORC:

Operational cost of recovery ($/kg-ABE)

Rs:

The ABE yield (g-ABE/g-substrate)

TRC:

Total recovery cost ($/kg-ABE)

TIC:

The total investment cost ($)

TOAC:

The total operational annualized cost ($/year)

tri :

Payback period (year)

ta :

Annual operation time (h)

VC:

Vapor compression

VLE:

Vapor–liquid equilibrium

3DC:

Three distillation columns

3DC-VC:

Three distillation columns with vapor compression

4DC:

Three distillation columns

4DC-DE:

Four distillation columns with double-effect

5DC:

Five distillation columns

References

  1. QureshiN, SahaBC, CottaMA, SinghV (2013) An economic evaluation of biological conversion of wheat straw to butanol: A biofuel. Energy Convers Manag65:456–462. https://doi.org/10.1016/j.enconman.2012.09.015

    Article  CAS  Google Scholar 

  2. JangY, MalaviyaA, ChoC et al (2012) Butanol production from renewable biomass by clostridia. Bioresour Technol123:653–663

    Article  CAS  Google Scholar 

  3. NiY, SunZ (2009) Recent progress on industrial fermentative production of acetone–butanol–ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol83:415–423. https://doi.org/10.1007/s00253-009-2003-y

    Article  CAS  Google Scholar 

  4. EzejiTC, QureshiN, BlaschekHP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol18:220–227. https://doi.org/10.1016/j.copbio.2007.04.002

    Article  CAS  Google Scholar 

  5. MarianoAP, FilhoRM (2012) Improvements in biobutanol fermentation and their impacts on distillation energy consumption and wastewater generation. Bioenergy Res5:504–514. https://doi.org/10.1007/s12155-011-9172-0

    Article  CAS  Google Scholar 

  6. QureshiN, HughesS, MaddoxIS, CottaMA (2005) Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst Eng27:215–222. https://doi.org/10.1007/s00449-005-0402-8

    Article  CAS  Google Scholar 

  7. LiQ, CaiH, HaoB et al (2010) Enhancing Clostridial Acetone-butanol-ethanol (ABE) production and improving fuel properties of ABE-enriched biodiesel by extractive fermentation with biodiesel. Appl Biochem Biotechnol162:2381–2386. https://doi.org/10.1007/s12010-010-9010-4

    Article  CAS  Google Scholar 

  8. ShiZ, ZhangC, ChenJ, MaoZ (2005) Performance evaluation of acetone-butanol continuous flash extractive fermentation process. Bioprocess Biosyst Eng27:175–183. https://doi.org/10.1007/s00449-004-0396-7

    Article  CAS  Google Scholar 

  9. ChenY, RenH, LiuD et al (2014) Enhancement of n-butanol production by in situ butanol removal using permeating–heating–gas stripping in acetone–butanol–ethanol fermentation. Bioresour Technol164:276–284. https://doi.org/10.1016/j.biortech.2014.04.107

    Article  CAS  Google Scholar 

  10. LiuG, WeiW, WuH et al (2011) Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation–PV coupled process. J Membr Sci373:121–129. https://doi.org/10.1016/j.memsci.2011.02.042

    Article  CAS  Google Scholar 

  11. GrootWJ, van derLansRGJM., LuybenKCAM. (1992) Technologies for butanol recovery integrated with fermentations. Process Biochem27:61–75. https://doi.org/10.1016/0032-9592(92)80012-R

    Article  CAS  Google Scholar 

  12. LuybenWL (2008) Control of the heterogeneous azeotropic n-butanol/water distillation system. Energy Fuels22:4249–4258. https://doi.org/10.1021/ef8004064

    Article  CAS  Google Scholar 

  13. MarianoAP, KeshtkarMJ, AtalaDIP et al (2011) Energy requirements for butanol recovery using the flash fermentation technology. Energy Fuels25:2347–2355. https://doi.org/10.1021/ef200279v

    Article  CAS  Google Scholar 

  14. XueC, ZhaoX-Q, LiuC-G et al (2013) Prospective and development of butanol as an advanced biofuel. Biotechnol Adv31:1575–1584. https://doi.org/10.1016/j.biotechadv.2013.08.004

    Article  CAS  Google Scholar 

  15. MatsudaK, KawazuishiK, KanshaY et al (2011) Advanced energy saving in distillation process with self-heat recuperation technology. Energy36:4640–4645. https://doi.org/10.1016/j.energy.2011.03.042

    Article  CAS  Google Scholar 

  16. KiranB, JanaAK, SamantaAN (2012) A novel intensified heat integration in multicomponent distillation. Energy41:443–453. https://doi.org/10.1016/j.energy.2012.02.055

    Article  CAS  Google Scholar 

  17. KaufmanB, WaltherDC, ContagPR (2010) Multistage vapor compression distillation. WO Pat126848:A1

    Google Scholar 

  18. LuoH, BildeaCS, KissA (2015) Novel Heat-Pump-Assisted Extractive Distillation for Bioethanol Purification. Ind Eng Chem Res54:2208–2213. https://doi.org/10.1021/ie504459c

    Article  CAS  Google Scholar 

  19. Ramírez-MárquezC, Segovia-HernándezJG, HernándezS et al (2013) Dynamic behavior of alternative separation processes for ethanol dehydration by extractive distillation. Ind Eng Chem Res52:17554–17561. https://doi.org/10.1021/ie402834p

    Article  Google Scholar 

  20. BessaLCBA., FerreiraMC, BatistaEAC, MeirellesAJA (2013) Performance and cost evaluation of a new double-effect integration of multicomponent bioethanol distillation. Energy63:1–9. https://doi.org/10.1016/j.energy.2013.10.006

    Article  CAS  Google Scholar 

  21. BessaLCBa, BatistaFRM, MeirellesAJa (2012) Double-effect integration of multicomponent alcoholic distillation columns. Energy45:603–612. https://doi.org/10.1016/j.energy.2012.07.038

    Article  CAS  Google Scholar 

  22. FlodmanHR, TimmDC (2012) Batch distillation employing cyclic rectification and stripping operations. ISA Trans51:454–460. https://doi.org/10.1016/j.isatra.2011.12.003

    Article  Google Scholar 

  23. MaletaVN, KissA, TaranVM, MaletaBV (2011) Understanding process intensification in cyclic distillation systems. Chem Eng Process Process Intensif50:655–664. https://doi.org/10.1016/j.cep.2011.04.002

    Article  CAS  Google Scholar 

  24. Grisales DíazVH, Olivar TostG (2016) Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation. Bioresour Technol218:174–182. https://doi.org/10.1016/j.biortech.2016.06.091

    Article  Google Scholar 

  25. Grisales DíazVH, Olivar TostG (2016) Ethanol and isobutanol dehydration by heat-integrated distillation. Chem Eng Process Process Intensif108:117–124. https://doi.org/10.1016/j.cep.2016.07.005

    Article  Google Scholar 

  26. Grisales DíazVH, Olivar TostG (2017) Energy efficiency of a new distillation process for isopropanol, butanol, and ethanol (IBE) dehydration. Chem Eng Process Process Intensif112:56–61. https://doi.org/10.1016/j.cep.2017.01.005

    Article  Google Scholar 

  27. MarongiuB, FerinoI, MonaciR et al (1984) Thermodynamic properties of aqueous non-electrolyte mixtures. Alkanols + water systems. J Mol Liq28:229–247. https://doi.org/10.1016/0167-7322(84)80027-6

    Article  CAS  Google Scholar 

  28. ZhangY, FuJ, ZhangJ (1992) Liquid–liquid equilibrium and vapor–liquid equilibrium for containing octylenic aldehyde systems. J Chem Ind Eng43:98–104

    CAS  Google Scholar 

  29. FischerK, GmehlingJ (1994) P-x and .gamma..infin. Data for the different binary butanol-water systems at 50.degree.C. J Chem Eng Data39:309–315. https://doi.org/10.1021/je00014a026

    Article  CAS  Google Scholar 

  30. Humbird D, Davis R, Tao L et al (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. Natl. Renew. Energy Lab (Technical report NREL/TP-5100-47764)

  31. Al-SahhafTA, JabbarNJ (1993) Vapor-liquid equilibrium of the acetone-water-salt system. J Chem Eng Data38:522–526. https://doi.org/10.1021/je00012a010

    Article  CAS  Google Scholar 

  32. ReindersW, deMinjerCH (1947) Vapour-liquid equilibria in ternary systems. VI. The system water-acetone-chloroform. Recl des Trav Chim des Pays-Bas66:573–604. https://doi.org/10.1002/recl.19470660906

    Article  CAS  Google Scholar 

  33. OthmerDF, ChudgarMM, LevySL (1952) Binary and ternary systems of acetone, methyl ethyl ketone, and water. Ind Eng Chem44:1872–1881. https://doi.org/10.1021/ie50512a042

    Article  CAS  Google Scholar 

  34. QureshiN, BlaschekHP (2000) Using clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Appl Biochem Biotechnol84:225–235. https://doi.org/10.1385/ABAB:84-86:1-9:225

    Article  Google Scholar 

  35. NicolaouS, GaidaSM, PapoutsakisET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng12:307–331. https://doi.org/10.1016/j.ymben.2010.03.004

    Article  CAS  Google Scholar 

  36. LuC, ZhaoJ, YangS-T, WeiD (2012) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour Technol104:380–387. https://doi.org/10.1016/j.biortech.2011.10.089

    Article  CAS  Google Scholar 

  37. DouglasJM (1988) Conceptual design of chemical processes. McGraw-Hil, New York

    Google Scholar 

  38. RuggeriB, TommasiT, SanfilippoS (2015) BioH2 & BioCH4 through anaerobic digestion. https://doi.org/10.1007/978-1-4471-6431-9

  39. VaneLM, AlvarezFR (2013) Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 1. Process Simulations. J Chem Technol Biotechnol88:1436–1447. https://doi.org/10.1002/jctb.4087

    Article  CAS  Google Scholar 

  40. VaneLM, AlvarezFR, RosenblumL, GovindaswamyS (2013) Hybrid vapor stripping-vapor permeation process for recovery and dehydration of 1-butanol and acetone/butanol/ethanol from dilute aqueous solutions. Part 2. Experimental validation with simple mixtures and actual fermentation broth. J Chem Technol Biotechnol88:1436–1447. https://doi.org/10.1002/jctb.4086

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Colombian Administrative Department of Science, Technology, and Innovation (COLCIENCIAS) for the financial support that made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Hugo Grisales Diaz.

Ethics declarations

Conflict of interest

The authors declare that no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grisales Diaz, V.H., Olivar Tost, G. Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation. Bioprocess Biosyst Eng 41, 395–405 (2018). https://doi.org/10.1007/s00449-017-1874-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1874-z

Keywords

Navigation