Skip to main content
Log in

Optimization of production of C-phycocyanin and extracellular polymeric substances by Arthrospira sp.

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The key factors influencing the production of C-phycocyanin (C-PC) and extracellular polymeric substances (EPS) by photoautotrophic culture of Arthrospira sp. were optimized using Taguchi method. Six factors were varied at either three or two levels as follows: light intensity at three levels; three initial culture pHs; two species of Arthrospira; three concentrations of Zarrouk’s medium; three rates of aeration of the culture with air mixed with 2% v/v carbon dioxide; and two incubation temperatures. All cultures ran for 14 days. The optimal conditions for the production of C-PC and EPS were different. For both products, the best cyanobacterium proved to be Arthrospira maxima IFRPD1183. The production of C-PC was maximized with the following conditions: a light intensity of 68 µmol photons m−2 s−1 (a diurnal cycle of 16-h photoperiod and 8-h dark period), an initial pH of 10, the full strength (100%) Zarrouk’s culture medium, an aeration rate of 0.6 vvm (air mixed with 2% v/v CO2) and a culture temperature of 30 °C. The concentration of Zarrouk’s medium was the most important factor influencing the final concentration of C-PC. The optimal conditions for maximal production of EPS were as follows: a light intensity of 203 µmol photons m−2 s−1 with the earlier specified light–dark cycle; an initial pH of 9.5; a 50% strength of Zarrouk’s medium; an aeration rate of 0.2 vvm (air mixed with 2% v/v CO2); and a temperature of 35 °C. Production of C-PC and EPS in raceway ponds is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A 620 :

Spectrophotometric absorbance at 620 nm

Ave:

Average value

C b :

Dry biomass concentration

C C-PC :

Concentration of C-PC

C EPS :

Concentration of EPS

C-PC:

C-phycocyanin

DCW:

Dry cell weight

DOFFactor :

Degree of freedom of factors

EPS:

Extracellular polymeric substances

\( \bar{F}_{i} \) :

Averages of signal-to-noise ratio of factors at each factor level

F ratio :

F-ratio

f :

A cyanobacterium-dependent constant

N :

Noise

n :

Number of experimental trials

ODxxx :

Optical density at xxx nm

Q C-PC :

Volumetric rate of C-PC production

Q EPS :

Volumetric rate of EPS production

SSError :

Sum of squares of error

SSFactor :

Sum of squares of factors

S :

Signal

t d :

Doubling time

\(\bar {T}\) :

Grand average of signal-to-noise ratio

w :

Weight of the dry biomass in the culture broth

y i :

Observed values of concentrations, productivities and yields of C-PC and EPS

Y opt :

Expected values of concentrations, productivities and yields of C-PC and EPS

Y C-PC/X :

C-PC yield on biomass

Y EPS/X :

EPS yield on biomass

µ :

Specific growth rate

References

  1. Richmond A (1986) Handbook of microalgal mass culture. CRC Press, Boca Raton

    Google Scholar 

  2. Eriksen NT (2008) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14

    Article  CAS  Google Scholar 

  3. Shimamatsu H (2004) Mass production of Spirulina, an edible microalga. Hydrobiologia 512:39–44

    Article  Google Scholar 

  4. Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microbial Technol 20:221–224

    Article  CAS  Google Scholar 

  5. Setyoningrum TM, Nur MMA (2015) Optimization of C-phycocyanin production from S. platensis cultivated on mixotrophic condition by using response surface methodology. Biocatal Agric Biotechnol 4:603–607

    Google Scholar 

  6. Richmond A (1992) Mass culture of cyanobacteria. In: Mann NH, Carr NG (eds) Photosynthetic prokaryotes. Plenum Press, New York, pp 181–209

    Chapter  Google Scholar 

  7. Uslu LH, Işık O, Sayın S, Durmaz Y, Göksan T, Gökpınar S (2009) The effect of temperature on protein and amino acid composition of Spirulina platensis. J Fish Aquat Sci 26:139–142

    Google Scholar 

  8. Ravelonandro PH, Ratianarivo DH, Joannis-Cassand C, Isambert A, Raherimandimby M (2011) Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): effect of agitation, salinity and CO2 addition. Food Bioprod Process 89:209–216

    Article  CAS  Google Scholar 

  9. Ogbonda KH, Rebecca EA, Gideon OA (2007) Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresour Technol 98:2207–2211

    Article  CAS  Google Scholar 

  10. Lee MC, Chen YC, Peng TC (2012) Two-stage culture method for optimized polysaccharide production in Spirulina platensis. J Sci Food Agric 92:1562–1569

    Article  CAS  Google Scholar 

  11. Soundarapandian P, Vasanthi B (2008) Effects of chemical parameters on Spirulina platensis biomass production: optimized method for phycocyanin extraction. Int J Zool Res 4:1–11

    Article  CAS  Google Scholar 

  12. Uslu L, Oya I, Kemal K, Goksan T (2011) The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. Afr J Biotechnol 10(3):386–389

    CAS  Google Scholar 

  13. Pelizer LH, Danesi EDG, de Rangel CO, Sassano CEN, Carvalho JCM, Sato S, Moraes IO (2003) Influence of inoculum age and concentration in Spirulina platensis cultivation. J Food Eng 56:371–375

    Article  Google Scholar 

  14. Kumar M, Kulshreshtha J, Singh GP (2011) Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature. Braz J Microbiol 42:1128–1135

    Article  CAS  Google Scholar 

  15. Volkmann H, Imianovsky U, Oliveira JLB, Sant’Anna ES (2008) Cultivation of Arthrospira (Spirulina) platensis in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile. Braz J Microbiol 39:98–101

    Article  Google Scholar 

  16. Viskari PJ, Colyer CL (2003) Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Anal Biochem 319:263–271

    Article  CAS  Google Scholar 

  17. Romay C, Armesto J, Remirez D, Gonzalez R, Ledon N, Garcia I (1998) Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm Res 47:36–41

    Article  CAS  Google Scholar 

  18. Manirafasha E, Ndikubwimana T, Zeng X, Lu Y, Jing K (2016) Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J 109:282–296

    Article  CAS  Google Scholar 

  19. Stadnichuk IN, Tropin IV (2017) Phycobiliproteins: structure, functions and biotechnological applications. Appl Biochem Microbiol 53:1–10

    Article  CAS  Google Scholar 

  20. Philippis RD, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  21. Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour Technol 97:1822–1827

    Article  CAS  Google Scholar 

  22. Trabelsi L, Sakni NHM, Ouada HB, Bacha H, Roudesli S (2009) Partial characterization of extracellular polysaccharides produced by cyanobacterium Arthrospira platensis. Biotechnol Bioprocess Eng 14:27–31

    Article  CAS  Google Scholar 

  23. Guillaume Cogne JB, Gros Dussap CG (2003) Identification of a metabolic network structure representative of Arthrospira (Spirulina) platensis metabolism. Biotechnol Bioeng 84:667–676

    Article  Google Scholar 

  24. Trabelsi L, Ouada HB, Bacha H, Ghoul M (2009) Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis. J Appl Phycol 21:405–412

    Article  CAS  Google Scholar 

  25. Majdoub H, Ben Mansour M, Chaubet F, Roudesli MS, Maaroufi RM (2009) Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochim Biophys Acta 1790:1377–1381

    Article  CAS  Google Scholar 

  26. Hayashi T, Hayashi K, Maeda M, Kojima I (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J Nat Prod 59:83–87

    Article  CAS  Google Scholar 

  27. Challouf R, Trabelsi L, Dhieb RB, Abed OE, Yahia A, Ghozzi K, Ammar JB, Omran H, Ouada HB (2011) Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz Arch Biol Technol 54:831–838

    Article  CAS  Google Scholar 

  28. Grossman AR, Schaefer MR, Chiang GG, Collier JL (1994) Phycobilisome and phycobiliprotein structure. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 139–216

    Google Scholar 

  29. Nomsawai P, de Marsac NT, Thomas JC, Tanticharoen M, Cheevadhanarak S (1999) Light regulation of phycobilisome structure and gene expression in Spirulina platensis Cl (Arthrospira sp. PCC 9438). Plant Cell Physiol 40:1194–1202

    Article  CAS  Google Scholar 

  30. Ajayan KV, Selvaraju M, Thirugnanamoorthy K (2012) Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: an in vitro study. Biomass Bioenergy 47:436–441

    Article  CAS  Google Scholar 

  31. Ürek RÖ, Tarhan L (2012) The relationship between the antioxidant system and phycocyanin production in Spirulina maxima with respect to nitrate concentration. Turk J Bot 36:369–377

    Google Scholar 

  32. Grossman AR, Bhaya D, He Q (2001) Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem 276:11449–11452

    Article  CAS  Google Scholar 

  33. Lewitus AJ, Caron DA (1990) Relative effects of nitrogen or phosphorus depletion and light intensity on the pigmentation, chemical composition, and volume of Pyrenomonas salina (Cryptophyceae). Mar Ecol Prog Ser 61:171–181

    Article  CAS  Google Scholar 

  34. Sloth JK, Wiebe MG, Eriksen NT (2006) Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme Microb Technol 38:168–175

    Article  CAS  Google Scholar 

  35. Montgomery DC (2001) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  36. Ross PJ (1988) Taguchi techniques for quality engineering. McGraw-Hill, New York

    Google Scholar 

  37. Roy RK (2001) Design of experiments using the Taguchi approach. Wiley, London

    Google Scholar 

  38. Prasad KK, Mohan SV, Rao RS, Pati BR, Sarma PN (2005) Laccase production by Pleurotus ostreatus 1804: optimization of submerged culture conditions by Taguchi DOE methodology. Biochem Eng J 24:17–26

    Article  CAS  Google Scholar 

  39. Rao RS, Kumar CG, Prakasham RS, Hobbs PJ (2008) The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal. Biotechnol J 3:510–523

    Article  CAS  Google Scholar 

  40. Sirisansaneeyakul S, Luangpipat T, Vanichsriratana W, Srinophakun T, Chen HH, Chisti Y (2007) Optimization of lactic acid production by immobilized Lactococcus lactis IO-1. J Ind Microbiol Biotechnol 34:381–391

    Article  CAS  Google Scholar 

  41. Sirisansaneeyakul S, Singhasuwan S, Choorit W, Phoopat N, Garcia JL, Chisti Y (2011) Photoautotrophic production of lipids by some Chlorella strains. Mar Biotechnol 13:928–941

    Article  CAS  Google Scholar 

  42. Sirisansaneeyakul S, Songpim M, Vaithanomsat P (2012) Optimization of inulinase, invertase and β-fructofuranosidase production from Aspergillus niger TISTR 3570 by the Taguchi method. Kasetsart J (Nat Sci) 46:238–255

    CAS  Google Scholar 

  43. Zarrouk C (1966) Contribution a l’etude d’une cyanobacterie: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. PhD thesis, University of Paris, France

  44. ASTM (1976) Annual book of ASTM standards, Part 31, “Water”, standard D 992-71, 363. ASTM International, West Conshohocken

    Google Scholar 

  45. Moore BG, Tischer RG (1964) Extracellular polysaccharide of algae: effects on life-support system. Science 145:586–587

    Article  CAS  Google Scholar 

  46. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  47. AOAC (2000) Official method of analysis of the association of the analytical chemists. AOAC International, Rockville

    Google Scholar 

  48. Bennett A, Bogorad L (1973) Complimentary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435

    Article  CAS  Google Scholar 

  49. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington, DC

    Google Scholar 

  50. Sirisansaneeyakul S, Wannawilai S, Chisti Y (2013) Repeated fed-batch production of xylitol by Candida magnoliae TISTR 5663. J Chem Technol Biotechnol 88:1121–1129

    Article  CAS  Google Scholar 

  51. Bezerra RP, Matsudo MC, Converti A, Sato S, de Carvalho JC (2008) Influence of ammonium chloride feeding time and light intensity on the cultivation of Spirulina (Arthrospira) platensis. Biotechnol Bioeng 100:297–305

    Article  CAS  Google Scholar 

  52. Colla LM, Oliveira Reinehr C, Reichert C, Costa JAV (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour Technol 98:1489–1493

    Article  CAS  Google Scholar 

  53. Tarko T, Duda-Chodak A, Kobus M (2012) Influence of growth medium composition on synthesis of bioactive compounds and antioxidant properties of selected strains of Arthrospira cyanobacteria. Czech J Food Sci 30:258–267

    CAS  Google Scholar 

  54. Aikawa S, Izumi Y, Matsuda F, Hasunuma T, Chang JS, Kondo A (2012) Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour Technol 108:211–215

    Article  CAS  Google Scholar 

  55. Chaiklahan R, Khonsarn N, Chirasuwan N, Ruengjitchatchawalya M, Bunnag B, Tanticharoen M (2007) Response of Spirulina platensis C1 to high temperature and high light intensity. Kasetsart J (Nat Sci) 41:123–129

    CAS  Google Scholar 

  56. Chen HB, Wu JY, Wang CF, Fu CC, Shieh CJ, Chen CI, Wang CY, Liu YC (2010) Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J 53:52–56

    Article  Google Scholar 

  57. Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18:603–608

    Article  CAS  Google Scholar 

  58. Kim JH, Nemson JA, Melis A (1993) Photosystem II reaction center damage and repair in Dunaliella salina (green alga) (analysis under physiological and irradiance-stress conditions). Plant Physiol 103:181–189

    Article  CAS  Google Scholar 

  59. Walter A, de Carvalho JC, Soccol VT, de Faria ABB, Ghiggi V, Soccol CR (2011) Study of phycocyanin production from Spirulina platensis under different light spectra. Braz Arch Biol Technol 54:675–682

    Article  CAS  Google Scholar 

  60. Zeng X, Danquah MK, Zhang S, Zhang X, Wu M, Chen XD, Ng IS, Jing K, Lu Y (2012) Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chem Eng J 183:192–197

    Article  CAS  Google Scholar 

  61. Markou G, Angelidaki I, Nerantzis E, Georgakakis D (2013) Bioethanol production by carbohydrate-enriched Arthrospira (Spirulina) platensis. Energies 6:3937–3950

    Article  CAS  Google Scholar 

  62. Yuan X, Kumar A, Sahu AK, Ergas SJ (2011) Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor. Bioresour Technol 102:3234–3239

    Article  CAS  Google Scholar 

  63. Markou G, Chatzipavlidis I, Georgakakis D (2012) Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World J Microbiol Biotechnol 28:2661–2670

    Article  CAS  Google Scholar 

  64. Yilmaz HK (2012) The proximate composition and growth of Spirulina platensis biomass (Arthrospira platensis) at different temperatures. J Anim Vet Adv 11:1135–1138

    Article  Google Scholar 

  65. Pandey JP, Tiwari A (2010) Optimization of biomass production of Spirulina maxima. J Algal Biomass Util 1:20–32

    Google Scholar 

  66. Chisti Y (2012) Raceways-based production of algal crude oil. In: Posten C, Walter C (eds) Microalgal biotechnology: potential and production. de Gruyter, Berlin, pp 113–146

    Google Scholar 

  67. Sompech K, Chisti Y, Srinophakun T (2012) Design of raceway ponds for producing microalgae. Biofuels 3:387–397

    Article  CAS  Google Scholar 

  68. Converti A, Lodi A, Del Borghi A, Solisio C (2006) Cultivation of Spirulina platensis in a combined airlift-tubular reactor system. Biochem Eng J 32:13–18

    Article  CAS  Google Scholar 

  69. Molina Grima E, Acién Fernández FG, García Camacho F, Camacho Rubio F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368

    Article  Google Scholar 

  70. Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  CAS  Google Scholar 

  71. Wongluang P, Chisti Y, Srinophakun T (2013) Optimal hydrodynamic design of tubular photobioreactors. J Chem Technol Biotechnol 88:55–61

    Article  CAS  Google Scholar 

  72. Markou G (2014) Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode. Appl Biochem Biotechnol 172:2758–2768

    Article  CAS  Google Scholar 

  73. Lee S-H, Lee JE, Kim Y, Lee S-Y (2016) The production of high purity phycocyanin by Spirulina platensis using light-emitting diodes based two-stage cultivation. Appl Biochem Biotechnol 178:382–395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by: Ministry of Science and Technology, Thailand; the Department of Biotechnology, Kasetsart University; the Center for Advanced Studies in Tropical Natural Resources, Kasetsart University Institute for Advanced Studies (KUIAS); and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarote Sirisansaneeyakul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dejsungkranont, M., Chisti, Y. & Sirisansaneeyakul, S. Optimization of production of C-phycocyanin and extracellular polymeric substances by Arthrospira sp.. Bioprocess Biosyst Eng 40, 1173–1188 (2017). https://doi.org/10.1007/s00449-017-1778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1778-y

Keywords

Navigation