Skip to main content
Log in

Distribution of sulfonamides in liquid and solid anaerobic digestates: effects of hydraulic retention time and swine manure to rice straw ratio

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The effects of hydraulic retention time (20 and 15 days) and swine manure to rice straw ratios on distribution of sulfonamides (SAs) in liquid and solid anaerobic digestates were studied using bench-scale completely stirred tank reactors at (37 ± 1) °C. Results showed that anaerobic digestion (AD) treatment exhibited a good removal effect on sulfadiazine (SDZ), sulfadimidine (SM2) and sulfachloropyridazine (SCP), especially at HRT = 20 days and co-digestion with swine manure and rice straw. The removal rates of SDZ and SM2 were more than 90%, but only 72.8% for SCP. The residual SAs were mainly remained in solid digestates, with residual rates ranging from 28.8% to 71.3%, 40.6% to 88.0, and 82.7% to 97.0% for SDZ, SM2 and SCP, respectively. Due to lower pKa and higher log K ow of SCP, its residue in solid digestates was far more than SDZ and SM2. Higher HRT and co-digestion could improve the degradation of SAs, which can also be put down to the occurrence of cometabolism of SAs and COD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hvistendahl M (2012) Public health. China takes aim at rampant antibiotic resistance. Science 336:795. doi:10.1126/science.336.6083.795

    Article  CAS  Google Scholar 

  2. Alcock RE, Sweetman A, Jones KC (1999) Assessment of organic contaminant fate in waste water treatment plants I: selected compounds and physicochemical properties. Chemosphere 38:2247–2262. doi:10.1016/S0045-6535(98)00444-5

    Article  CAS  Google Scholar 

  3. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. doi:10.1016/j.chemosphere.2006.03.026

    Article  CAS  Google Scholar 

  4. Lamshöft M, Sukul P, Zühlke S, Spiteller M (2007) Metabolism of 14C-labeled and non-labeled sulfadiazine after administration to pigs. Anal Bioanal Chem 388:1733–1745. doi:10.1007/s00216-007-1368-y

    Article  Google Scholar 

  5. Baran W, Adamek E, Ziemiańska J, Sobczak A (2011) Effects of the presence of sulfonamides in the environment and their influence on human health. J Hazard Mater 196:1–15. doi:10.1016/j.jhazmat.2011.08.082

    Article  CAS  Google Scholar 

  6. Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. PNAS 110:3435–3440. doi:10.1073/pnas.1222743110

    Article  CAS  Google Scholar 

  7. Luo Y, Xu L, Rysz M, Wang Y, Zhang H, Alvarez PJJ (2011) Occurence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe river basin, China. Environ Sci Technol 45:1827–1833. doi:10.1021/es104009s

    Article  CAS  Google Scholar 

  8. Wang M, Sun X, Li P, Zheng G (2014) A novel alternate feeding mode for semi-continuous anaerobic co-digestion of food waste with chicken manure. Bioresour Technol 164:309–314. doi:10.1016/j.biortech.2014.04.077

    Article  CAS  Google Scholar 

  9. Zhang Q-Q, Ying G-G, Pan C-G, Liu Y-S, Zhao J-L (2015) A comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modelling and linkage to bacterial resistance. Environ Sci Technol 49:6772–6782. doi:10.1021/acs.est.5b00729

    Article  CAS  Google Scholar 

  10. Critically Important Antimicrobials for Human Medicine (2009) Report of the WHO Advisory Group on integrated surveillance of antimicrobial resistance (AGISAR, Copenhagen), 3rd edn, pp 1–26

  11. Chen H, Dong YH, Wang H, An Q, Zhang J, Liu X (2008) Residual characteristics of sulfanilamide in animal feces in Jiangsu Province. J Agro Environ Sci 27:0385–0389. doi:10.3321/j.issn:1672-2043.2008.01.072

    Google Scholar 

  12. Langhammer J-P (1989) Untursuchungen zum Verbleib antimikrobiell wirksamer Aezneistoffe als Rückstănde in Gülle und im landwirtschaftlichen Umfeld. Univerität Bonn, Germany, pp 138–145

    Google Scholar 

  13. Li F, Cheng S, Yu H, Yang D (2016) Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China. J Clean Prod 126:451–460. doi:10.1016/j.jclepro.2016.02.104

    Article  Google Scholar 

  14. Wang X, Lu X, Yang G, Feng Y, Ren G, Han X (2016) Development process and probable future transformations of rural biogas in China. Renew Sust Energ Rev 55:703–712. doi:10.1016/j.rser.2015.09.097

    Article  Google Scholar 

  15. Lu JB, Zhu L, Hu GL, Wu JG (2010) Integrating animal manure-based bioenergy production with invasive species control: a case study at Tongren Pig Farm in China. Biomass Bioenerg 34:821–827. doi:10.1016/j.biombioe.2010.01.026

    Article  CAS  Google Scholar 

  16. Aydin S, Ince B, Ince O (2015) Application of real-time PCR to determination of combined effect of antibiotics on bacteria, methanogenic archaea, archaea in anaerobic sequencing batch reactors. Water Res 76:88–98. doi:10.1016/j.watres.2015.02.043

    Article  CAS  Google Scholar 

  17. Mitchell SM, Ullman JL, Teel AL, Watts RJ, Frear C (2013) The effects of the antibiotics ampicillin, florfenicol, sulfamethazine, and tylosin on biogas production and their degradation efficiency during anaerobic digestion. Bioresour Technol 149:244–252. doi:10.1016/j.biortech.2013.09.048

    Article  CAS  Google Scholar 

  18. Mohring SA, Strzysch I, Fernandes MR, Kiffmeyer TK, Tuerk J, Hamscher G (2009) Degradation and elimination of various sulfonamides during anaerobic fermentation: a promising step on the way to sustainable pharmacy? Environ Sci Technol 43:2569–2574. doi:10.1021/es802042d

    Article  CAS  Google Scholar 

  19. Sponza DT, Demirden P (2007) Treatability of sulfamerazine in sequential upflow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) process. Sep Purif Technol 56:108–117. doi:10.1016/j.seppur.2006.07.013

    Article  CAS  Google Scholar 

  20. Chen Y, Zhang H, Luo Y, Song J (2012) Occurrence and dissipation of veterinary antibiotics in two typical swine wastewater treatment systems in east China. Environ Monit Assess 184:2205–2217. doi:10.1007/s10661-011-2110-y

    Article  CAS  Google Scholar 

  21. Tian S, Zhang M, Chen L, Liang C, Huang M (2011) Lab-scale study on removal of sulfamethazine from sewage by UASB-SBR process. Technol Water Treat 37:84–87

    CAS  Google Scholar 

  22. Sahar E, Messalem R, Cikurel H, Aharoni A, Brenner A, Godehardt M, Jekel M, Ernst M (2011) Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR). Water Res 45:4827–4836. doi:10.1016/j.watres.2011.06.023

    Article  CAS  Google Scholar 

  23. Boe K, Angelidaki I (2009) Serial CSTR digester configuration for improving biogas production from manure. Water Res 43:166–172. doi:10.1016/j.watres.2008.09.041

    Article  CAS  Google Scholar 

  24. Oliver GHD, Santos-Neto AJ, Zaiat M (2016) Evaluation of sulfamethazine sorption and biodegradation by anaerobic granular sludge using batch experiments. Bioprocess Biosyst Eng 39:115–124. doi:10.1007/s00449-015-1495-3

    Article  Google Scholar 

  25. Ye X, Chang Z, Qian Y, Pan J, Zhu J (2012) Investigation on large and medium scale biogas plants and biological properties of digestate in Jiangsu Province. Trans Chin Soc Agr Eng 28:222–227. doi:10.3969/j.issn.1002-6819.2012.06.036

    Google Scholar 

  26. Wang N, Guo XY, Xu J, Shan Z (2014) Pollution characteristics and environmental risk assessment of typical veterinary antibiotics in livestock farms in Southeastern China. J Environ Sci Health Part B 49:1–12. doi:10.1080/03601234.2014.896660

    Article  Google Scholar 

  27. APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment

  28. Nordell E, Nilsson B, Påledal SN, Karisalmi K, Moestedt J (2016) Co-digestion of manure and industrial waste-The effects of trace element addition. Waste Manag 47:21–27. doi:10.1016/j.wasman.2015.02.032

    Article  CAS  Google Scholar 

  29. Zhang T, Mao C, Zhai N, Wang X, Yang G (2015) Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk. Waste Manag 35:119–126. doi:10.1016/j.wasman.2014.09.004

    Article  Google Scholar 

  30. Huang W, Huang W, Yuan T, Zhao Z, Cai W, Zhang Z, Lei Z, Feng C (2016) Volatile fatty acid (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate. Water Res 90:344–353. doi:10.1016/j.watres.2015.12.044

    Article  CAS  Google Scholar 

  31. Jiménez J, Guardia-Puebla Y, Cisneros-Ortiz ME, Morgan-Sagastume JM, Guerra G, Noyola A (2015) Optimization of the specific methanogenic activity during the anaerobic co-digestion of pig manure and rice straw, using industrial clay residues as inorganic additive. Chem Eng J 259:703–714. doi:10.1016/j.cej.2014.08.031

    Article  Google Scholar 

  32. Wang J, Shen D, Xu Y (2006) Effect of acidification percentage and volatile organic acids on the anaerobic biological process in simulated landfill bioreactors. Process Biochem 41:1677–1681. doi:10.1016/j.procbio.2006.02.005

    Article  CAS  Google Scholar 

  33. Starkenburg WV (1997) Anaerobic treatment of wastewater: state of the art. Microb 66:705–715

    Google Scholar 

  34. Yu TH, Lin AY, Panchangam SC, Hong PK, Yang PY, Lin CF (2011) Biodegradation and bio-sorption of antibiotics and non-steroidal anti-inflammatory drugs using immobilized cell process. Chemosphere 84:1216–1222. doi:10.1016/j.chemosphere.2011.05.045

    Article  CAS  Google Scholar 

  35. Ben W, Qiang Z, Yin X, Yin X, Qu J, Pan X (2014) Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater. J Environ Sci 26:1623–1629. doi:10.1016/j.jes.2014.06.002

    Article  CAS  Google Scholar 

  36. Yu X, Zhang L, Liang M, Sun W (2015) pH-dependent sulfonamides adsorption by carbon nanotubes with different surface oxygen contents. Chem Eng J 279:363–371. doi:10.1016/j.cej.2015.05.044

    Article  CAS  Google Scholar 

  37. Hiba A, Carine A, Haifa AR, Ryszard L, Farouk J (2016) Monitoring of twenty-two sulfonamides in edible tissues investigation of new metabolites and their potential toxicity. Food Chem 192:212–227. doi:10.1016/j.foodchem.2015.06.093

    Article  CAS  Google Scholar 

  38. Gauthier H, Yaegeau V, Cooper DG (2010) Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Sci Total Environ 408:1701–1706. doi:10.1016/j.scitotenv.2009.12.012

    Article  CAS  Google Scholar 

  39. Delgadillo-Mirquez L, Lardon L, Steyer JP, Patureau D (2011) A new dynamic model for bioavailability and cometabolism of micropollutants during anaerobic digestion. Water Res 45:4511–4521. doi:10.1016/j.watres.2011.05.047

    Article  CAS  Google Scholar 

  40. Lim SJ, Kim BJ, Jeong CM, Choi J, Ahn YH, Chang HN (2008) Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresour Technol 99:7866–7874. doi:10.1016/j.biortech.2007.06.028

    Article  CAS  Google Scholar 

  41. Qin M, Lin Z, Wang D, Long X, Zheng M, Qiu Y (2015) What are the differences between aerobic and anaerobic toxic effects of sulfonamides on Escherichia coli? Environ Toxicol Phar 41:251–258. doi:10.1016/j.etap.2015.12.013

    Article  Google Scholar 

  42. Li B, Zhang T (2010) Biodegradation and adsorption of antibiotics in the activated sludge process. Environ Sci Technol 44:3468–3473. doi:10.1021/es903490h

    Article  CAS  Google Scholar 

  43. Carballa M, Omil F, Lema JM, Llompart M, García-Jares C, Rodríguez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926. doi:10.1016/j.watres.2004.03.029

    Article  CAS  Google Scholar 

  44. Shah S, Zhang H, Song X, Hao C (2015) Quantum chemical study of the photolysis mechanisms of sulfachloropyridazine and the influence of selected divalent metal ions. Chemosphere 138:765–769. doi:10.1016/j.chemosphere.2015.07.068

    Article  CAS  Google Scholar 

  45. Wu CX, Spongberg AL, Witter JD (2009) Sorption and biodegradation of selected antibiotics in biosolids. J Environ Sci Health A 44:454–461. doi:10.1080/10934520902719779

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 21577052), the Independent Innovation Fund of Agricultural Science and Technology of Jiangsu Province (No. CX(16)1003-1, No. ZX(16)2033). We thank Dr. Jun Gao, Dr. Na Wang and Ms. Xinyan Guo for their kind cooperation in measurement and sample determination in Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Xu, C., Du, J. et al. Distribution of sulfonamides in liquid and solid anaerobic digestates: effects of hydraulic retention time and swine manure to rice straw ratio. Bioprocess Biosyst Eng 40, 319–330 (2017). https://doi.org/10.1007/s00449-016-1699-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1699-1

Keywords

Navigation