Skip to main content
Log in

Metabolism of 14C-labelled and non-labelled sulfadiazine after administration to pigs

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The behaviour of sulfadiazine (SDZ) and its metabolites was investigated by administering the 14C-labelled veterinary drug to fattening pigs. The excretion kinetics were determined after daily collection of manure. Two known metabolites, N-acetylsulfadiazine and 4-hydroxysulfadiazine, and two hitherto unidentified minor metabolites were recovered. Various mass spectrometric techniques such as parent, product ion scans and accurate mass measurement were used. The new compounds were identified as N-formylsulfadiazine (For-SDZ) and N-acetyl-4-hydroxysulfadiazine (Ac-4-OH-SDZ). The identification of SDZ, Ac-SDZ and For-SDZ was confirmed by comparison of the spectroscopic and chromatographic data of the synthesized authentic references. The identification of the hydroxylated compounds 4-OH-SDZ and Ac-4-OH-SDZ was performed by MSn, and accurate mass measurements. Only 4% of the administered radioactivity remained in the pig after ten days and SDZ accounted for 44% of the 96% radioactivity excreted. More than 93% of the labelled compounds were detected and identified in the manure. The key analytical problem, namely a high concentration of matrix in sample extracts, was overcome by advanced measurement techniques and with the use of a suitable internal standard. The mean recoveries for all compounds were ≥96%. Linearity was established over a concentration range of 0.5 to 10,000 μg kg−1 manure with a correlation coefficient ≥0.99. The same experiment was carried out simultaneously with non-labelled SDZ to obtain manure for outdoor soil experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hamscher G, Sczensny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518

    Article  CAS  Google Scholar 

  2. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils-a review. J Plant Nutr Soil Sc 166:145–167

    Article  CAS  Google Scholar 

  3. Hirsch R, Ternes T, Haberer K, Mehlich A, Ballwanz F, Kratz K (1998) Determination of antibiotics in different water compartments via liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 815:213

    Article  CAS  Google Scholar 

  4. Hirsch R, Ternes T, Haberer K, Kratz K (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109

    Article  CAS  Google Scholar 

  5. Hartig C, Storm T, Jeckel M (1999) Detection and identification of sulphonamide drugs in municipal waste water by liquid chromatography coupled with electrospray ionisation tandem mass spectrometry. J Chromatogr A 854:163

    Article  CAS  Google Scholar 

  6. Sukul P, Spiteller M (2006) Sulfonamides in the environment as veterinary drugs. Rev Environ Contam Toxicol 187:67–101

    Article  CAS  Google Scholar 

  7. Grothe M, Vockel A, Schwarze D, Mehlich A, Freitag M (2004) Fate of antibiotics in food chain and environment originating from pig fattening (part 1). Environ Bulletin 13:1216–1224

    Google Scholar 

  8. Hamscher G, Pawelzick H, Höper H, Nau H (2002) Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24:861–868

    Article  Google Scholar 

  9. Thiele-Bruhn S, Seibicke T, Schulten HR, Leinweber P (2004) Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J Environ Qual 33:1331–1342

    Article  CAS  Google Scholar 

  10. Landi L, Badalucco L, Pomare F, Nannipieri P (1993) Effectiveness of antibiotics to distinguish the contributions of fungi and bacteria to net nitrogen mineralization, nitrification, and respiration. Soil Biol Biochem 25:1771–1778

    Article  CAS  Google Scholar 

  11. Boxall A, Kolpin D, Halling-Sørensen B, Tolls J (2003) Are veterinary medicines causing environmental risks? Environ Sci Technol 8:286–294

    Article  Google Scholar 

  12. Nouws J, Vree TB, Hekster YA (1985) In vitro antimicrobial activity of hydroxyl and N-acetyl sulphonamide metabolites. Vet Q 7:70–72

    CAS  Google Scholar 

  13. Krishida K, Nishinari K, Furusawa N (2005) Liquid chromatographic determination of sulfamonomethoxine, sulfadimethoxine and their N4-acetyl metabolites in chicken plasma. Chromatographia 61:81–84

    Article  CAS  Google Scholar 

  14. Nouws J, Mevius D, Vree TB, Degen M (1989) Pharmacokinetics and renal clearance of sulfadimidine, sulfamerazine and sulfadiazine and their N4-acetyl and hydroxyl metabolites in pigs. Vet Q 11:78–86

    CAS  Google Scholar 

  15. Nielsen P, Friis C, Gyrd-Hansen N, Rasmussen F (1986) Metabolism of sulfadiazine in neonatal and young pigs. Comparative in vivo and in vitro studies. Biochem Pharmacol 35:2509–2512

    Article  CAS  Google Scholar 

  16. Vree TB, Schoondermark-van de Ven E, Verwey-van Wissen CPWGM, Baars AM, Swolfs A, van Galen PM, Amatdjais-Groenen H (1995) Isolation, idenfication and determination of sulfadiazine and its hydroxy metabolites and conjugates from man and Rhesus monkey by HPLC J. Chromatogra B 670:111–123

    Article  CAS  Google Scholar 

  17. Vockel A, Röwer K, Vogel K, Mehlich A, Stolz M, Brand B, Grote M (2004) Abschlussbericht: Resistenzentwicklung und Rückstände in der landwirtschaftlichen Tierhaltung. Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes NRW http://www.lej.nrw.de

  18. Pleasance S, Blay P, Quilliam MA, O’Hara G (1991) Determination of sulfonamides by liquid chromatography, ultraviolet diode array detection and ion-spray tandem mass spectrometry with application to cultured salmon flesh. J Chromatogr 558:155

    Article  CAS  Google Scholar 

  19. Kristiansen GK, Brock R, Bojesen G (1994) A comparison of rapid thermospray-MS/MS and LC-thermospray-MS/MS methods for sulphonamides in meat and blood. Anal Chem 66:3253

    Article  CAS  Google Scholar 

  20. Gehring TA, Rushing LG, Churchwell MI, Doerge DR, McErlane KM, Thompson HC Jr (1996) HPLC determination of sulfadiazine residues in coho salmon (Oncorhyncus kisutch) with confirmation by liquid chromatography with atmospheric pressure chemical ionization mass spectrometry. J Agric Food Chem 44:3164

    Article  CAS  Google Scholar 

  21. Pfeifer T, Tuerk J, Bester K, Spiteller M (2002) Determination of selected sulfonamide antibiotics and trimethoprim in manure by electrospray and atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 16:663–669

    Article  CAS  Google Scholar 

  22. Ramaswami V, Tirrell D (1989) Synthesis of a cleavable heterobifunctional photolabelling reagent: ring-labelled 3-[(4-azidophenyl)dithio]propionic acid-14C. J Label Compd Radiopharm 27:889–899

    Article  CAS  Google Scholar 

  23. Gannett P, Johnson E, Grimes M, Myers A, Deavers R, Tracy T (2003) Synthesis of deuterated 4,4-diaminodiphenylsulfone (Dapsone) and related analogs. J Label Compd Radiopharm 46:107–114

    Article  CAS  Google Scholar 

  24. Hoellinger H, Nam N, Pichat L (1973) Synthese de la sulfadiazine et de ses derives: La (N4-acetylsulfanilamido)-2-pyrimidine, la (bennzenesulfonamido)-2-pyrimidine et la (p-toluenesulfonamido)-2-pyrimidine marquees par le 14C dans le noyau pyrimidine. J Label Compd Radiopharm 9:161–166

    Article  CAS  Google Scholar 

  25. Rieckhoff H (1964) N4-Formylation of sulfonamides. Pharmazie 19:571

    Google Scholar 

  26. Pfeifer T, Tuerk J, Fuchs R (2005) Structural characterization of sulfadiazine metabolites using H/D exchange combined with various MS/MS experiments. J Am Soc Mass Spectrom 16:1687–1694

    Article  CAS  Google Scholar 

  27. Biostoffverordnung http://bundesrecht.juris.de/biostoffv/index.html

  28. Friis C, Gyrd-Hansen N, Nielsen P, Olsen C, Rasmussen F (1984) Pharmacokinetics and metabolism of sulfadiazine in neonatal and young pigs. Acta Pharmacol Tox 54:321–326

    CAS  Google Scholar 

  29. Søli N, Tramstad T, Skjerve E, Sohlberg S, Ødegaard S (1990) A comparison of some of the pharmacokinetic parameters of three commercial sulphadiazine/trimethoprim combined preparations given orally to pigs. Vet Res Commun 14:403–410

    Article  Google Scholar 

  30. Garwacki S, Lewicki J, Wiechetek M, Grys S, Rutkowski J, Zaremba M (1996) A study of the pharmacokinetics and tissue residues of an oral trimethoprim/sulphadiazine formulation in healthy pigs. J Vet Pharmacol Ther 19:423–430

    CAS  Google Scholar 

  31. Baert K, de Baere S, Croubels S, Gasthuys F, de Backer P (2001) Pharmacokinetics and bioavailability of sulfadiazine and trimethoprim (trimazin 30%) after oral administration in non-fasted young pigs. J Vet Pharmacol Ther 24:295–298

    Article  CAS  Google Scholar 

  32. Klagkou K, Pullen F, Harrison M, Organ A, Firth A, Langley G (2003) Fragmentation pathways of sulphonamides under electrospray tandem mass spectrometric conditions. Rapid Commun Mass Spectrom 17:2373–2379

    Article  CAS  Google Scholar 

  33. Okumura F, Ueda O, Kitainura S, Tatsuml K (1995) N-Acetylation and N-formylation of carcinogenic arylamines and related compounds in dogs. Carcinogenesis 16:71–76

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the German Research Foundation (DFG) is greatly acknowledged (FOR 566). Many thanks to Bayer AG, Monheim for carrying out the feeding experiments (Dr. J. Köster, Dr. G. Beddies and Dr. C. Corsing) and to A. Lagojda for his support in accurate mass measurements. We thank Jürgen Ebert (Institute of Biology V, RWTH Aachen University) for providing the 13C-labelled SDZ. The authors are grateful to the Ministry of Innovation, Science, Research and Technology of the State of North Rhine-Westphalia for financing a preparative LC system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Spiteller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamshöft, M., Sukul, P., Zühlke, S. et al. Metabolism of 14C-labelled and non-labelled sulfadiazine after administration to pigs. Anal Bioanal Chem 388, 1733–1745 (2007). https://doi.org/10.1007/s00216-007-1368-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1368-y

Keywords

Navigation