Skip to main content
Log in

Hydrophobic adsorption in ionic medium improves the catalytic properties of lipases applied in the triacylglycerol hydrolysis by synergism

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

It is known that lipases may have their catalytic properties improved by the action of some salts or by the adsorption on hydrophobic supports. However, what we present in this work is more than that: we evaluate the combination of these two factors of hyperactivation of lipases from Acremonium-like ROG 2.1.9, a study that has not been done so far. This work proves that a synergistic effect occurs when the lipases are immobilized on hydrophobic supports at the presence of sodium chloride and are applied in triacylglycerol hydrolysis. This assay made it possible to achieve the highest hyperactivation of 500 % with the lipases immobilized on Phenyl-Sepharose and applied with 0.1 M of sodium chloride. Besides this positive effect on enzyme activity, the use of these two factors led to the thermal stability increasing of the immobilized lipases. For this derivative, the recovered activity was approximately 85 % after 6 h incubated at 55 °C and 1.0 M of the sodium chloride against 50 % of the same derivative without this salt. Furthermore, others assays were performed to prove the evidences about the synergistic effect, showing a promising method to improve the catalytic properties of the lipases from Acremonium-like ROG 2.1.9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gupta S, Ingole P, Singh K, Bhattacharya A (2012) Comparative study of the hydrolysis of different oils by lipase-immobilized membranes. J Appl Polym Sci 124:17–26

    Article  Google Scholar 

  2. Chen GJ, Kuo CH, Chen CI, Yu CC, Shieh CJ, Liu YC (2012) Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability. J Biosci Bioeng 113:166–172

    Article  CAS  Google Scholar 

  3. Pérez D, Martín S, Fernández-Lorente G, Felice M, Guisán JM, Ventosa A, García MT, Mellado E (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6:1–11

    Google Scholar 

  4. Secundo F, Correa G, Tarabiono C, Gatti-Lafranconi P, Brocca S, Lotti M, Jaeger KE, Puls M, Eggert T (2006) The lid is a structural and functional determinant of lipase activity and selectivity. J Mol Catal B Enzym 39:166–170

    Article  CAS  Google Scholar 

  5. Quilles JCJ, Brito RR, Borges JP, Aragon CC, Fernandez-Lorente G, Bocchni-Martins DA, Gomes E, da Silva R, Boscolo M, Guisán JM (2015) Modulation of the activity and selectivity of the immobilized lipases by surfactants and solvents. Biochem Eng J 93:274–280

    Article  CAS  Google Scholar 

  6. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1453–1463

    Article  Google Scholar 

  7. Manol EA, Santos JCS, Freire DMC, Rueda N, Fernandez-Lafuente R (2015) Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microb Technol 71:53–57

    Article  Google Scholar 

  8. Siodmiak T, Mangelings D, Heyden YV, Borowska MZ, Marszall MP (2015) High enantioselective novozym 435-catalyzed esterification of (R, S)-flurbiprofen monitored with a chiral stationary phase. Appl Biochem Biotechnol 175:2769–2785

    Article  CAS  Google Scholar 

  9. Ashajari M, Mohammadi M, Badri R (2015) Chemical amination of Rhiopus oryzae lipase for multipoint covalent immobilization on epoxy-functionalized supports: modulation of stability and selectivity. J Mol Catal B Enzym 115:128–134

    Article  Google Scholar 

  10. Tavano OL, Fernandez-Lafuente R, Goulart AJ, Monti R (2013) Optimization of the immobilization of sweet potato amylase using glutaraldehyde-agarose support. Characterization of the immobilized enzyme. Process Biochem 48:1054–1058

    Article  CAS  Google Scholar 

  11. Sheldon RA (2007) Enzyme Immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  12. Romero O, Ribero CW, Guisan JM, Palomo JM (2013) Novel enzyme-polymer conjugates for biotechnological applications. Peer J 27:1–17

    Google Scholar 

  13. Fernandez-Lafuente R, Armisen P, Sabuquillo P, Fernandez-Lorente G, Guisan JM (1998) Immobilization of lipases by selective adsorption on hydrophobic supports. Chem Phys Lipids 93:185–197

    Article  CAS  Google Scholar 

  14. Kurtovic I, Marshall SN, Zhao X (2011) Hydrophobic immobilization of a bile salt activated lipase from Chinook salmon (Oncorhynchus tshawytscha). J Mol Catal B Enzym 72:168–174

    Article  CAS  Google Scholar 

  15. Zivkovic LTI, Zivkovi LS, Balic BM, Kokunesoski MJ, Jokic BM, Karadzic IM (2015) Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica zirconia. Biochem Eng J 93:73–83

    Article  Google Scholar 

  16. Coteron A, Martinez M, Aracil J (1998) Reactions of olive oil and glycerol over immobilized lipases. J Am Oil Chem Soc 75:657–660

    Article  CAS  Google Scholar 

  17. Arab-Tehrany E, Jacquot M, Gaiani C, Imran M, Desobry S, Linder M (2012) Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci Technol 25:24–33

    Article  CAS  Google Scholar 

  18. Mendes AA, Castro HF, Rodrigues DS, Adriano WS, Tardiolli PW, Mammarella EJ, Giordano RC, Giordano RLC (2011) Multipoint covalent immobilization of lipase on chitosan hybrid hydrogels: influence of the polyelectrolyte complex type and chemical modification on the catalytic properties of the biocatalysts. J Ind Microbiol Biotechnol 38:1055–1066

    Article  CAS  Google Scholar 

  19. Rooney D, Weatherley LR (2001) The effect of reaction conditions upon lipase catalysed hydrolysis of high oleate sunflower oil in a stirred liquid–liquid reactor. Process Biochem 2001(36):947–953

    Article  Google Scholar 

  20. Santos KC, Cassimiro DMJ, Avelar MHM, Hirata DB, Castro HF, Fernández-Lafuente R, Mendes AA (2013) Characterization of the catalytic properties of lipases from plant seeds for the production of concentrated fatty acids from different vegetable oils. Ind Crops Prod 49:462–470

    Article  CAS  Google Scholar 

  21. Palomo JM, Segura RL, Fernández-Lorente G, Fernández-Lafuente R, Guisán JM (2007) Glutaraldehyde modification of lipases adsorbed on aminated supports: a simple way to improve their behaviour as enantioselective biocatalyst. Enzyme Microb Technol 40:704–707

    Article  CAS  Google Scholar 

  22. Wei HN, Wu B (2008) Screening and immobilization Burkholderia sp. GXU56 lipase for enantioselective resolution of (R, S)-methyl mandelate. Appl Biochem Biotechnol 149:79–88

    Article  CAS  Google Scholar 

  23. Kaewprapan K, Wongkongkatep J, Panbangred W, Phinyocheep P, Marie E, Durand A, Inprakhon P (2011) Lipase-catalyzed synthesis of hydrophobically modified dextrans: activity and regioselectivity of lipase from Candida rugose. J Biosci Bioeng 112:124–129

    Article  CAS  Google Scholar 

  24. Matsumae H, Furui M, Shibatani T, Tosa T (1994) Production of optically active 3-phenylglucidic acid ester by the lipase from Serratia marcescens on a hollow-fiber membrane reactor. J Ferment Bioeng 78:59–63

    Article  CAS  Google Scholar 

  25. Jegannathan KR, Jun-Yee L, Chan ES, Ravindra P (2009) Design an immobilized lipase enzyme of biodiesel production. J Renew Sustain Energy 1:1–8

    Article  Google Scholar 

  26. Li X, He XY, Li LZ, Wang YD, Wang CY, Shi H, Wang F (2012) Enzymatic production of biodiesel from Pistacia chinensis bge seed oil using immobilized lipase. Fuel 92:89–93

    Article  CAS  Google Scholar 

  27. Lu J, Deng L, Nie K, Wang F, Tan T (2012) Stability of immobilized Candida sp. 99–125 lipase for biodiesel production. Chem Eng Technol 35:2120–2124

    Article  CAS  Google Scholar 

  28. Azócar L, Ciudad G, Heipieper HJ, Muñoz R, Navia R (2011) Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value. J Biosci Bioeng 112:583–589

    Article  Google Scholar 

  29. Hama S, Tamalampudi S, Fukumizu T, Miura K, Yamaji H, Kondo A, Fukuda A (2008) Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalyst in biodiesel-fuel production. J Biosci Bioeng 101:328–333

    Article  Google Scholar 

  30. Wang A, Liu M, Wang H, Zhou C, Du Z, Zhu S, Shen S, Ouyang P (2008) Improving enzyme immobilization in mesocellular siliceous foams by microwave irradiation. J Biosci Bioeng 106:286–291

    Article  CAS  Google Scholar 

  31. Trivedi A, Heinemann M, Spiess AC, Daussmann T, Buchs J (2005) Optimization of adsorptive immobilization of alcohol dehydrogenases. J Biosci Bioeng 99:340–347

    Article  CAS  Google Scholar 

  32. Jun C, Jeon BW, Joo JC, Lee QAT, Gu SA, Byun S, Cho DH, Kim D, Sang BI, Kim YH (2013) Thermostabilization of Candida antarctica lipase B by double immobilization: adsorption on a macroporous polyacrylate carrier and R1 silaffin-mediated biosilicification. Process Biochem 48:1181–1187

    Article  CAS  Google Scholar 

  33. Cui C, Tao Y, Ge C, Zhen Y, Chen B, Tan T (2015) Synergistic effects of amine and protein modified epoxy-support on immobilized lipase activity. Colloids Surf B 133:51–57

    Article  CAS  Google Scholar 

  34. Vasconcellos A, Paula AS, Luizon RAF, Farias LA, Gomes E, Aranda DAG, Nery JG (2012) Synergistic effect in the catalytic activity of lipase Rhizomucor miehei immobilized on zeolites for the production of biodiesel. Microporous Mesoporous Mater 163:343–355

    Article  Google Scholar 

  35. Ibrahim NA, Guo Z, Xu X (2008) Enzymatic interesterification of palme stearin and coconut oil by a dual lipase system. J Am Oil Chem Soc 85:37–45

    Article  CAS  Google Scholar 

  36. Cherif S, Mnif S, Hadrich F, Adbelkafi S, Sayadi S (2008) A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids Health Dis 10:1–8

    Google Scholar 

  37. Fernandez-Lorente G, Palomo JM, Cocca J, Mateo C, Moro P, Terreni M, Fernandez-Lafuente R, Guisan JM (2003) Regio-selective deprotection of peracetylated sugars via lipase hydrolysis. Tetrahedron 59:5705–5711

    Article  CAS  Google Scholar 

  38. Fernández-Lorente G, Betancor L, Carrascosa AV, Palomo JM, Guisán JM (2012) Release of omega-3 fatty acids by the hydrolysis of fish oil catalyzed by lipases immobilized on hydrophobic supports. J Am Oil Chem Soc 89:97–102

    Article  Google Scholar 

  39. Galvis M, Barbosa O, Ruiz M, Cruz J, Ortiz C, Torres R, Fernandez-Lafuente R (2012) Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Process Biochem 47:2373–2378

    Article  CAS  Google Scholar 

  40. Brabcová J, Demianová Z, Vondrasek J, Jágr M, Zarevúcka M, Palomo JM (2013) Highly selective purification of three lipases from Geotrichum candidum 4013 and their characterization and biotechnological applications. J Mol Catal B Enzym 98:62–72

    Article  Google Scholar 

  41. Abreu L, Fernandez-Lafuente R, Rodrigues RC, Volpato G, Ayub MAZ (2014) Efficient purification-immobilization of an organic solvent-tolerant lipase from Staphylococcus warneri EX17 on porous styrene-divinylbenzene beads. J Mol Catal B Enzym 99:51–55

    Article  Google Scholar 

  42. Barbosa O, Torres R, Ortiz C, Fernandez-Lafuente R (2012) The slow-down of the CALB immobilization rate permits to control the inter and intra molecular modification produced by glurataldehyde. Process Biochem 47:766–774

    Article  CAS  Google Scholar 

  43. Ferrarezi AL, Pivetta DH, Bonilla-Rodriguez GO, Silva R, Guisán JM, Gomes E, Pessela BC (2013) Partial purification, immobilization and preliminary biochemical characterization of lipases from Rhizomucor pusillus. Adv Enzyme Res 1:79–90

    Article  Google Scholar 

  44. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from São Paulo Research Foundation (FAPESP), Grants 2012/09054-3 and 2013/00530-0 and to Dr. André Rodrigues, expert systematics of fungi and researcher at the State University of São Paulo (UNESP, Rio Claro, SP, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Carlos Quilles Junior or Maurício Boscolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quilles Junior, J.C., Ferrarezi, A.L., Borges, J.P. et al. Hydrophobic adsorption in ionic medium improves the catalytic properties of lipases applied in the triacylglycerol hydrolysis by synergism. Bioprocess Biosyst Eng 39, 1933–1943 (2016). https://doi.org/10.1007/s00449-016-1667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1667-9

Keywords

Navigation