Skip to main content
Log in

Non-water miscible ionic liquid improves biocatalytic production of geranyl glucoside with Escherichia coli overexpressing a glucosyltransferase

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Whole cells of Escherichia coli overexpressing a glucosyltransferase from Vitis vinifera were used for the glucosylation of geraniol to geranyl glucoside. A high cell density cultivation process for the production of whole-cell biocatalysts was developed, gaining a dry cell mass concentration of up to 67.6 ± 1.2 g L−1 and a glucosyltransferase concentration of up to 2.7 ± 0.1 g protein L−1 within a process time of 48 h. Whole-cell batch biotransformations in milliliter-scale stirred-tank bioreactors showed highest conversion of geraniol at pH 7.0 although the pH optimum of the purified glucosyltransferase was at pH 8.5. The biocatalytic batch process performance was improved significantly by the addition of a water-immiscible ionic liquid (N-hexylpyridinium bis(trifluoromethylsulfonyl)imid) for in situ substrate supply. The so far highest final geranyl glucoside concentration (291 ± 9 mg L−1) and conversion (71 ± 2 %) reported for whole-cell biotransformations of geraniol were achieved with 5 % (v/v) of the ionic liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rastogi SC, Heydorn S, Johansen JD et al (2001) Fragrance chemicals in domestic and occupational products. Contact Dermat 45:221–225

    Article  CAS  Google Scholar 

  2. Herrmann A (2007) Controlled release of volatiles under mild reaction conditions: from nature to everyday products. Angew Chem Int Ed 46:5836–5863

    Article  CAS  Google Scholar 

  3. Bönisch F, Frotscher J, Stanitzek S et al (2014) Activity-based profiling of a physiologic aglycone library reveals sugar acceptor promiscuity of family 1 UDP-Glucosyltransferases from grape. Plant Physiol 166:23–39

    Article  Google Scholar 

  4. Caputi L, Lim E, Bowles D (2008) Discovery of New Biocatalysts for the Glycosylation of Terpenoid Scaffolds. Chem Eur J 14:6656–6662

    Article  CAS  Google Scholar 

  5. Duetz WA, van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425

    Article  CAS  Google Scholar 

  6. Bräutigam S, Bringer-Meyer S, Weuster-Botz D (2007) Asymmetric whole cell biotransformations in biphasic ionic liquid/water-systems by use of recombinant Escherichia coli with intracellular cofactor regeneration. Tetrahedron Asymmetry 18:1883–1887

    Article  Google Scholar 

  7. Pfruender H, Jones R, Weuster-Botz D (2006) Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol 124:182–190

    Article  CAS  Google Scholar 

  8. León R, Fernandes P, Pinheiro HM et al (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Technol 23:483–500

    Article  Google Scholar 

  9. Cull SG, Holbrey JD, Vargas-Mora V et al (2000) Room-Temperature Ionic Liquids as Replacements for Organic Solvents in Multiphase Bioprocess Operations. Biotechnol Bioeng 69:227–233

    Article  CAS  Google Scholar 

  10. Freemantle M (1998) Designer solvents—Ionic liquids may boost clean technology development. Chem Eng News 76:32–37

    Article  Google Scholar 

  11. Pfruender H, Amidjojo M, Kragl U et al (2004) Efficient whole-cell biotransformation in a biphasic ionic liquid/water system. Angew Chem Int Ed 43:4529–4531

    Article  CAS  Google Scholar 

  12. Weuster-Botz D (2007) Process intensification of whole-cell biocatalysis with ionic liquids. Chem Record 7:334–340

    Article  CAS  Google Scholar 

  13. Puskeiler R, Kaufmann K, Weuster-Botz D (2005) Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol Bioeng 89:512–523

    Article  CAS  Google Scholar 

  14. Dennewald D, Hortsch R, Weuster-Botz D (2012) Evaluation of parallel milliliter-scale stirred-tank bioreactors for the study of biphasic whole-cell biocatalysis with ionic liquids. J Biotechnol 157:253–257

    Article  CAS  Google Scholar 

  15. Carmichael AJ, Seddon KR (2000) Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye. Nile Red J Phys Org Chem 13(10):591–595

    Article  CAS  Google Scholar 

  16. Thuy Pham TP, Cho C, Yun Y (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44(2):352–372

    Article  Google Scholar 

  17. Docherty KM, Dixon JK, Kulpa CF Jr (2007) Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation 18(4):481–493

    Article  CAS  Google Scholar 

  18. Riesenberg D, Schulz V, Knorre WA et al (1991) High cell density cultivation of Escherichia coli at controlled specific growth rate. J Biotechnol 20:17–28

    Article  CAS  Google Scholar 

  19. Fairbanks G, Steck TL, Wallachl DFH (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617

    Article  CAS  Google Scholar 

  20. Lee SY (1996) High cell-density culture of Escherichia coli. Review. Trends Biotechnol 14:98–105

    Article  CAS  Google Scholar 

  21. Schott C (2008) Proactive Debottlenecking: planing Ahead for the Downstream Bottleneck. BioProcess Int 6:18–23

    Google Scholar 

  22. de Roode BM, Franssen MCR, van der Padt A et al (2003) Perspectives for the Industrial Enzymatic Production of Glycosides. Review. Biotechnol Prog 19:1391–1402

    Article  Google Scholar 

  23. Gunata YZ, Bayonove CL, Baumes RL et al (1985) The aroma of grapes I. Extraction and determination of free and glycosidically bound fractions of some grape aroma components. J Chromatogr A 331:83–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of Andreas Schmideder by the TUM Graduate School (Technische Universität München, Germany). The support of Xenia Priebe by the International Graduate School of Science and Engineering (Technische Universität München, Germany) is acknowledged as well. We are thankful for the support of Fong-Chin Huang by the FLÜGGE program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Weuster-Botz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmideder, A., Priebe, X., Rubenbauer, M. et al. Non-water miscible ionic liquid improves biocatalytic production of geranyl glucoside with Escherichia coli overexpressing a glucosyltransferase. Bioprocess Biosyst Eng 39, 1409–1414 (2016). https://doi.org/10.1007/s00449-016-1617-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1617-6

Keywords

Navigation