Skip to main content

Advertisement

Log in

Additive-free harvesting of oleaginous phagotrophic microalga by oil and air flotation

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A unique oleaginous phagotrophic microalga Ochromonas danica is poised for effective lipid production from waste. Cell harvesting and dewatering are major costs in making algae-based products. In this work an effective additive-free harvesting method was developed, taking advantage of O. danica’s comparatively more hydrophobic surface and larger size. The algal cells’ partitioning to oil/water interface was evaluated. Recovery by flotation with waste cooking oil was optimized using an L-9 Taguchi orthogonal-array design. Further, additive-free cell collection and concentrating by air flotation was studied for the effects of both physical factors (column dimension, air–stone pore size, sample-to-column volume ratio) and culture properties (pH, culture growth stage, cell concentration, and pure versus impure cultures). The optimized process consistently achieved >90 % recovery in a single stage. 98+ % recovery could be achieved when starting concentrations were >108 cells/ml, or potentially using a two- or multi-stage process for diluter cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102(1):178–185

    Article  CAS  Google Scholar 

  2. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  CAS  Google Scholar 

  3. Ju L-K, Li C (2013) Algae having intracellular lipid particles and high lipid content. US Patent Application US 13/959,098

  4. Lin Z, Raya A, Ju L-K (2014) Microalga Ochromonas danica fermentation and lipid production from waste organics such as ketchup. Process Biochem 49(9):1383–1392

  5. Pringsheim EG (1952) On the nutrition of Ochromonas. Q J Microsc Sci 3(21):71–96

    Google Scholar 

  6. Semple KT, Cain RB (1996) Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microbiol 62(4):1265–1273

    CAS  Google Scholar 

  7. Semple KT (1998) Heterotrophic growth on phenolic mixtures by Ochromonas danica. Res Microbiol 149(1):65–72

    Article  CAS  Google Scholar 

  8. Aaronson S (1973) Particle aggregation and phagotrophy by Ochromonas. Arch Microbiol 92(1):39–44

    CAS  Google Scholar 

  9. Hosseini M, Ju L-K (2015) Use of phagotrophic microalga Ochromonas danica to pretreat waste cooking oil for biodiesel production. J Am Oil Chem Soc 92(1):29–35

    Article  CAS  Google Scholar 

  10. Chrzanowski TH, Lukomski NC, Grover JP (2010) Element stoichiometry of a mixotrophic protist grown under varying resource conditions. J Eukaryot Microbiol 57(4):322–327

    Article  Google Scholar 

  11. Shannon SP, Chrzanowski TH, Grover JP (2007) Prey food quality affects flagellate ingestion rates. Microb Ecol 53(1):66–73

    Article  Google Scholar 

  12. Daley RJ, Morris GP, Brown SR (1973) Phagotrophic ingestion of a blue-green alga by Ochromonas. J Eukaryotic Microbiol 20(1):58–61

    Google Scholar 

  13. Li C, Ju L-K (2014) Conversion of wastewater organics into biodiesel feedstock through the predator-prey interactions between phagotrophic microalgae and bacteria. RSC Adv 4:44026–44029

    Article  CAS  Google Scholar 

  14. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14(3):1037–1047

    Article  CAS  Google Scholar 

  15. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sust Energy 2:012701

    Article  Google Scholar 

  16. Lardon L, Helias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  CAS  Google Scholar 

  17. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  18. Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  CAS  Google Scholar 

  19. Benemann J, Koopman B, Weissman J, Eisenberg D, Goebel R (1980) Development of microalgae harvesting and high-rate pond technologies in California. Algae Biomass:457–495

  20. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20(4):459–466

    Article  CAS  Google Scholar 

  21. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  Google Scholar 

  22. Grima EM, Belarbi E-H, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7):491–515

    Article  Google Scholar 

  23. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioener Res 1(1):20–43

    Article  Google Scholar 

  24. Knuckey R, Brown M, Robert R, Frampton D (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng 35(3):300–313

    Article  Google Scholar 

  25. Hanotu J, Ying K, Shada OI, Bandulasena H, Zimmerman WB (2013) Microalgae recovery by microflotation for biofuel production using metallic coagulants. Biofuels 4:363–369

    Article  Google Scholar 

  26. Coward T, Lee JG, Caldwell GS (2013) Development of a foam flotation system for harvesting microalgae biomass. Algal Res 2(2):135–144

    Article  Google Scholar 

  27. Coward T, Lee JG, Caldwell GS (2014) The effect of bubble size on the efficiency and economics of harvesting microalgae by foam flotation. J Appl Phycol 27(2):733–742

    Article  Google Scholar 

  28. Edzwald J (1993) Algae, bubbles, coagulants, and dissolved air flotation. Water Sci Technol 27(10):67–81

    CAS  Google Scholar 

  29. Pushparaj B, Pelosi E, Torzillo G, Materassi R (1993) Microbial biomass recovery using a synthetic cationic polymer. Bioresour Technol 43(1):59–62

    Article  CAS  Google Scholar 

  30. Molina Grima E, Belarbi EH, Acien Fernandez F, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Article  CAS  Google Scholar 

  31. Ju L-K, Hosseini M (2015) Method and system for reducing free fatty acid content of a feedstock. Publication number: US20150037852A1, US Patent Application number: US 14/450,601, http://www.google.com/patents/US20150037852

  32. Ju L-K, Hosseini M (2015) Treatment/cleaning of oily water/wastewater using algae. Publication number: WO2015017794A1, Application number: PCT/US2014/049433, http://www.google.com/patents/WO2015017794A1?cl=en

  33. Taguchi G, Chowdhury S, Wu Y (2005) Taguchi’s quality engineering handbook

  34. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9(1):29–33

    Article  CAS  Google Scholar 

  35. Rosenberg M (1984) Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol Lett 22(3):289–295

    Article  CAS  Google Scholar 

  36. Dorobantu LS, Yeung AKC, Foght JM, Gray MR (2004) Stabilization of oil-water emulsions by hydrophobic bacteria. Appl Environ Microbiol 70(10):6333–6336

    Article  CAS  Google Scholar 

  37. Wang H, Sodagari M, Chen Y, He X, Newby BZ, Ju L-K (2011) Initial bacterial attachment in slow flowing systems: effects of cell and substrate surface properties. Coll Surf B 87(2):415–422

    Article  CAS  Google Scholar 

  38. Eccleston-Parry JD, Leadbeater B (1995) Regeneration of phosphorus and nitrogen by four species of heterotrophic nanoflagellates feeding on three nutritional states of a single bacterial strain. Appl Environ Microbiol 61(3):1033–1038

    CAS  Google Scholar 

  39. Simonds S, Grover JP, Chrzanowski TH (2010) Element content of Ochromonas danica: a replicated chemostat study controlling the growth rate and temperature. FEMS Microbiol Ecol 74(2):346–352

    Article  CAS  Google Scholar 

  40. Ju L-K, Sundararajan A (1994) The effects of cells on oxygen transfer in bioreactors: physical presence of cells as solid particles. Biochem Eng J 56:B15–B21

    CAS  Google Scholar 

  41. Han M, Kim TI, Kim J (2007) Effects of floc and bubble size on the efficiency of the dissolved air flotation (DAF) process. Water Sci Technol 56:109–115

    Article  CAS  Google Scholar 

  42. Chen Y, Liu J, Ju Y-H (1998) Flotation removal of algae from water. Coll Surf B 12(1):49–55

    Article  CAS  Google Scholar 

  43. Phoochinda W, White D (2003) Removal of algae using froth flotation. Environ Technol 24(1):87–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ohio Water Development Authority (Grant number 5300). Dr. Donald Ott (Department of Biology, The University of Akron) assisted in microscopic examination. Mr. Jack Gillespie fabricated the air flotation columns. Several coworkers made contributions: Dr. Qin Zhang and Mr. Jacob Kohl established many of the experimental procedures; Dr. Zhongye Lin prepared the pure culture sample by high-density fermentation; and Dr. Cong Li maintained the continuous-flow process from which the impure culture samples were collected.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Kwang Ju.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Starvaggi, H.A. & Ju, LK. Additive-free harvesting of oleaginous phagotrophic microalga by oil and air flotation. Bioprocess Biosyst Eng 39, 1181–1190 (2016). https://doi.org/10.1007/s00449-016-1594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1594-9

Keywords

Navigation