Skip to main content
Log in

Continuous synthesis of hexanal by immobilized hydroperoxide lyase in packed-bed reactor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study aimed to develop an optimal continuous procedure of immobilized hydroperoxide lyase (HPL)-catalyzed synthesis of hexanal. A central composite design was used to study the combined effect of substrate concentration and the residence time of the reactant on hexanal concentration. The optimum conditions for hexanal synthesis included a 13-HPOD concentration of 43.54 mM and a residence time of 60.99 min. The maximum hexanal concentration was 3560 ± 130 mg/L when 16 U of immobilized HPLwas used. Furthermore, the stability of immobilized HPL was significantly improved in the packed-bed reactor, as evidenced by the slowed enzyme inactivation and prolonged operation time. The immobilized HPL remained activity until 40 mL substrate solution flowed past the packed-bed reactor. The catalyst productivity of hexanal in the packed-bed reactor was 5.35 ± 0.34 mg/U, much higher than that in the batch stirred reactor. This study was greatly meaningful for providing a green method to the large-scale production of hexanal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buchhaupt M, Guder JC, Etschmann MMW, Schrader J (2012) Synthesis of green note aroma compounds by biotransformation of fatty acids using yeast cells coexpressing lipoxygenase and hydroperoxide lyase. Appl Microbiol Biotechnol 93:159–168

    Article  Google Scholar 

  2. Schrader J, Etschmann MM, Sell D, Hilmer JM, Rabenhorst J (2004) Applied biocatalysis for the synthesis of natural flavour compounds: current industrial processes and future prospects. Biotech Lett 26(6):463–472

    Article  CAS  Google Scholar 

  3. Gigot C, Ongena M, Fauconnier M-L, Wathelet J-P, Jardin PD, Thonart P (2010) The lipoxygenase metabolic pathway in plants: potential for industrial production of natural green leaf volatiles. Biotechnol Agron Soc Environ 14:451–460

    Google Scholar 

  4. Fauconnier M-L, Marlier M (1996) An efficient procedure for the production of fatty acid hydroperoxides from hydrolyzed flax seed oil and soybean lipoxygenase. Biotechnol Techn 10(11):839–844

    Article  CAS  Google Scholar 

  5. Noordermeer MA, Van Der Goot W, Van Kooij AJ, Veldsink JW, Veldink GA, Vliegenthart JFG (2002) Development of a biocatalytic process for the production of C6-aldehydes from vegetable oils by soybean lipoxygenase and recombinant hydroperoxide lyase. J Agric Food Chem 50:4270–4274

    Article  CAS  Google Scholar 

  6. Xiong J, Kong X, Zhang C, Chen Y, Hua Y (2012) Production of (2E)-hexenal by a hydroperoxide lyase from Amaranthus tricolor and salt-adding steam distillation for the separation. Eur Food Res Technol 235:783–792

    Article  CAS  Google Scholar 

  7. Cass BJ, Schade F, Robinson CW, Thompson JE, Legge RL (2000) Production of tomato flavor volatiles from a crude enzyme preparation using a hollow-fiber reactor. Biotechnol Bioeng 67(3):372–377

    Article  CAS  Google Scholar 

  8. Fukushige H, Hildebrand DF (2005) Watermelon (Citrullus lanatus) hydroperoxide lyase greatly increases C6 aldehyde formation in transgenic leaves. J Agric Food Chem 53(6):2046–2051

    Article  CAS  Google Scholar 

  9. Santiago-Gómez MP, Vergely C, Policar C, Nicaud JM, Belin JM, Rochette L (2007) Characterization of purified green bell pepper hydroperoxide lyase expressed by Yarrowia lipolytica: radicals detection during catalysis. Enzyme Microb Technol 41(1–2):13–18

    Article  Google Scholar 

  10. Gargouri M, Drouet P, Legoy M-D (2004) Hydro-peroxide lyase activity in mint leaves volatile C6-aldehyde production from hydroperoxy-fatty acids. J Biotechnol 111:59–65

    Article  CAS  Google Scholar 

  11. Rabetafika HN, Gigot C, Fauconnier M-L, Ongena M, Destain J, du Jardin P, Wathelet J-P, Thonart P (2008) Sugar beet leaves as new source of hydroperoxide lyase in a bioprocess producing green-note aldehydes. Biotechnol Lett 30:1115–1119

    Article  CAS  Google Scholar 

  12. Németh AS, Márczy JS, Samu Z, Háger-Veress A, Szajáni B (2004) Biocatalytic production of 2(E)-hexenal from hydrolysed linseed oil. Enzyme Microb Technol 34:667–672

    Article  Google Scholar 

  13. Suurmeijer CNSP, Pérez-Gilabert M, van Unen DJ, van der Hijden HTWM, Veldink GA, Vliegenthart JFG (2000) Purification, stabilization and characterization of tomato fatty acid hydroperoxide lyase. Phytochemistry 53:177–185

    Article  CAS  Google Scholar 

  14. Brühlmann F, Bosijokovic B, Ullmann C, Auffray P, Fourage L, Wahler D (2013) Directed evolution of a 13-hydroperoxide lyase (CYP74B) for improved process performance. J Biotechnol 163:339–345

    Article  Google Scholar 

  15. Akacha NB, Gargouri M (2009) Enzymatic synthesis of green notes with hydroperoxide-lyase from olive leaves and alcohol-dehydrogenase from yeast in liquid/gas reactor. Process Biochem 44:1122–1127

    Article  Google Scholar 

  16. Marczy JS, Nemeth AS, Samu Z, Hager-Veress A, Szajani B (2002) Production of hexanal from hydrolyzed sunflower oil by lipoxygenase and hydroperoxid lyase enzymes. Biotechnol Lett 24:1673–1675

    Article  CAS  Google Scholar 

  17. Bucholz K, Kasche V, Bornscheuer UT (2012) Biocatalysts and enzyme technology. Wiley-VCH, Weinheim, pp 1–606

    Google Scholar 

  18. Chang S-W, Shaw J-F, Yang C-K, Shieh C-J (2007) Optimal continuous biosynthesis of hexyl laurate by packed-bed bioreactor. Process Biochem 42:1362–1366

    Article  CAS  Google Scholar 

  19. Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98:648–653

    Article  CAS  Google Scholar 

  20. Kotwal SM, Shankar V (2009) Immobilized invertase. Biotechnol Adv 27(3):11–22

    Google Scholar 

  21. Long Z, Kong X, Zhang C, Jiang B, Hua Y (2010) Stability of hydroperoxide lyase activity from Amaranthus tricolor (Amaranthus mangostanus L.) leaves: influence of selected additives. J Sci Food Agric 90:729–734

    CAS  Google Scholar 

  22. Liu Q, Hua Y, Kong X, Zhang C, Chen Y (2013) Covalent immobilization of hydroperoxide lyase on chitosan hybrid hydrogels and production of hexanal by immobilized enzyme. J Mol Catal B Enzym 95:89–98

    Article  CAS  Google Scholar 

  23. Vick BA (1991) A spectrophotometric assay for hydroperoxide lyase. Lipids 26:315–320

    Article  CAS  Google Scholar 

  24. Piao J, Kobayashi T, Adach S, Nakanishi K, Matsuno R (2004) Continuous synthesis of lauroyl or oleoyl erythritol by a packed-bed reactor with an immobilized lipase. Process Biochem 39:681–686

    Article  CAS  Google Scholar 

  25. Su E, Wei D (2014) Production of fatty acid butyl esters using the low cost naturally immobilized Carica papaya lipase. J Agric Food Chem 62:6375–6381

    Article  CAS  Google Scholar 

  26. Tiwari AK, Kumar A, Raheman (2007) Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenergy 31:569–575

    Article  Google Scholar 

  27. Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New Work

    Google Scholar 

  28. Halim SFA, Kamaruddin AH, Fernando WJN (2009) Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed-bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. Bioresour Technol 100:710–716

    Article  CAS  Google Scholar 

  29. Beg Q, Sahai V, Gupta R (2003) Statistical media optimization and alkaline protease production from Bacillus mojavensis in bioreactor. Process Biochem 39:203–209

    Article  CAS  Google Scholar 

  30. Schade F, Thompson JE, Legge RL (2003) Use of a plant-derived enzyme template for the production of the green-note volatile hexanal. Biotechnol Bioeng 3(84):265–273

    Article  Google Scholar 

  31. Nie K, Xie F, Wang F, Tan T (2006) Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B Enzym 43:142–147

    Article  CAS  Google Scholar 

  32. Zanin GM, Moraes FF (2004) Enzimas como Agentes Biotecnológicos, 4th edn. Legis Summa, cap, Ribeirão Preto, pp 35–85

  33. Laudani CG, Habulin M, Knez Z, Porta CD, Reverchon E (2007) Immobilized lipase-mediated long-chain fatty acid esterification in dense carbon dioxide: bench-scale packed-bed reactor study. J Supercrit Fluids 41:74–81

    Article  CAS  Google Scholar 

  34. Yadav M, Srivastva N, Singh RS, Upadhyay SN, Dubey SK (2014) Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed-bed bioreactor. Bioresour Technol 165:265–269

    Article  CAS  Google Scholar 

  35. Gigot C, Ongena M, Fauconnier M-L, Muhovski Y, Wathelet J-P, du Jardin P, Thonart P (2012) Optimization and scaling up of a biotechnological synthesis of natural green leaf volatiles using Beta vulgaris hydroperoxide lyase. Process Biochem 47:2547–2551

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Hua, Y. Continuous synthesis of hexanal by immobilized hydroperoxide lyase in packed-bed reactor. Bioprocess Biosyst Eng 38, 2439–2449 (2015). https://doi.org/10.1007/s00449-015-1481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1481-9

Keywords

Navigation