Skip to main content
Log in

Kinetics and model development for enzymatic synthesis of fructo-oligosaccharides using fructosyltransferase

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Experimental investigations were made to synthesize fructo-oligosaccharides (FOS) from sucrose using fructosyltransferase. The influence of various parameters such as temperature (45–55 °C), pH (4–5), initial sucrose concentration (ISC: 300–500 g/L) and enzyme concentration (4–32 U/mL) were varied. A maximum FOS yield of 60 % was observed at ISC 500 g/L, pH 4.5 with enzyme activity 32 U/mL and at 55 °C. It was confirmed that 1-kestose (tri-) was the major product of FOS as compared to nystose (tetra-) and fructosylnystose (penta-saccharides). Further, the reaction rate increases with increase in temperature. From separate sets of experiments, it was observed that FOS formation was affected by glucose inhibition. Apart from the increase in the rate of FOS formation with increasing enzyme activity, the final values of FOS yield increase though till 16 U/mL and thereafter attain plateau. A kinetic model was also developed, based on Michaelis–Menten kinetics, and a five-step ten-parameter model, including glucose inhibition, was obtained. Model was solved using COPASI® (version 4.8) solver for kinetic parameter estimations followed by time course simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

E:

Enzyme

FTase:

Fructosyltransferase

f(k):

Objective function of rate constants

Glu:

Glucose

Fru:

Fructose

k:

Rate constants for step reactions

Suc:

Sucrose

y and y:

Experimental and simulated data

U:

Unit of enzyme

BCA:

Bicinchoninic acid

FOS:

Fructo-oligosaccharides

HPLC:

High performance liquid chromatography

IGC:

Initial glucose concentration

ISC:

Initial sucrose concentration

PAHBAH:

p-Hydroxybenzhydrazide

References

  1. Macfarlane GT, Steed H, Macfarlane S (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 104(2):305–344

    CAS  Google Scholar 

  2. Sabater-Molina M, Larqué E, Torrella F, Zamora S (2009) Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem 65(3):315–328

    Article  CAS  Google Scholar 

  3. Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 4:1417–1435

    Article  Google Scholar 

  4. Hartemink R (1999) Prebiotic effects of non-digestible oligo- and polysaccharides. PhD thesis, Wageningen University, the Netherlands, p 218 (ISBN 90-5808-051-X )

  5. Crittenden RG, Playne MJ (1996) Production, properties and applications of food-grade oligosaccharides. Trends Food Sci Technol 7(11):353–361

    Article  CAS  Google Scholar 

  6. Rivero-Urgell M, Santamaria-Orleans A (2001) Oligosaccharides: application in infant food. Early Hum Dev 65:S43–S52

    Article  CAS  Google Scholar 

  7. Sangeetha PT, Ramesha MN, Prapulla SG (2005) Recent trends in the microbial production, analysis and application of Fructooligosaccharides. Trends Food Sci Technol 16(10):442–457

    Article  CAS  Google Scholar 

  8. Palai T, Mitra S, Bhattacharya PK (2012) Kinetics and design relation for enzymatic conversion of lactose into galacto-oligosaccharides using commercial grade β-galactosidase. J Biosci Bioeng 114(4):418–423

    Article  CAS  Google Scholar 

  9. Palai T, Bhattacharya PK (2013) Kinetics of lactose conversion to galacto- oligosaccharides by β-galactosidase immobilized on PVDF membrane. J Biosci Bioeng 115(6):668–673

    Article  CAS  Google Scholar 

  10. Palai T, Singh AK, Bhattacharya PK (2014) Enzyme, β-galactosidase immobilized on membrane surface for galacto-oligosaccharides formation from lactose: kinetic study with feed flow under recirculation loop. Biochem Eng J 88:68–76

    Article  CAS  Google Scholar 

  11. Palai T, Kumar A, Bhattacharya PK (2014) Synthesis and characterization of thermo-responsive poly-N-isopropyl acrylamide bioconjugates for application in the formation of galacto-oligosaccharides. Enzyme Microb Technol 55:40–49

    Article  CAS  Google Scholar 

  12. Khandekar DC, Palai T, Agarwal A, Bhattacharya PK (2014) Kinetics of sucrose conversion to fructo-oligosaccharides using enzyme (invertase) under free condition. Bioprocess Biosyst Eng 37(12):2529–2537

    Article  CAS  Google Scholar 

  13. Yun JW (1996) Fructooligosaccharides: occurrence, preparation, and application. Enzyme Microb Technol 19:107–117

    Article  CAS  Google Scholar 

  14. Sangeetha PT, Ramesh MN, Prapulla SG (2005) Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochem 40:1085–1088

  15. Yun JW, Jung KH, Oh JW, Lee JH (1990) Semibatch production of fructo-oligosaccharides fromsucrose by immobilized cells of Aureobasidium pullulans. Appl Biochem Biotechnol:299–308

  16. Yun JW, Song SK (1993) The production of high-content fructooligosaccharides from sucrose by the mixed-enzyme system of fructosyltransferase and glucose oxidase. Biotechnol Lett 15:573–576

    Article  CAS  Google Scholar 

  17. Christophe KS, Courtin M, Verjans P, Delcour JA (2009) Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chem 112:831–837

    Article  Google Scholar 

  18. Campbell JM, Bauer LL, Fahey-Jr GC, Hogarth AJCL, Wolf BW, Hunter DE (1997) Selected fructooligosaccharide (1-Kestose, Nystose, and 1F-β-fructofuranosylnystose) composition of foods and feeds. J Agric Food Chem 45:3076–3082

    Article  CAS  Google Scholar 

  19. Palcic MM (1999) Biocatalytic synthesis of oligosaccharides. Curr Opin Biotechnol 10:616–624

    Article  CAS  Google Scholar 

  20. Balken JAMV, Dooren TJGM, Tweel WJJVD, Kamphuis J, Meijer EM (1991) Production of 1-kestose with intact mycelium of Aspergillus phoenicis containing sucrose-1F-fructosyltransferase. Appl Microbiol Biotechnol 35:216–221

    Article  Google Scholar 

  21. Ghazi I, Segura AGD, Fernandez-Arrojo L, Alcalde M, Yates M, Rojas-Cervantes ML, Plou FJ, Ballesteros A (2005) Immobilization of fructosyltransferase from Aspergillus aculeatus onepoxy-activated sepabeads EC for the synthesis of fructo-oligosaccharides. J Mol Catal B Enzym 35:19–27

    Article  CAS  Google Scholar 

  22. Chiang CJ, Lee WC, Sheu DC, Duan KJ (1997) Immobilization of β-fructofuranosidases from Aspergillus on methacrylamidebasedpolymeric beads for production of fructooligosaccharides. Biotechnol Progr 13:577–582

    Article  CAS  Google Scholar 

  23. Mashitah MD, Hatijah SM (2014) Production of fructosyltransferase by Penicillium simplicissimum in batch culture. Afr J Biotechnol 13(46):4294–4307

    CAS  Google Scholar 

  24. Ãlvaro-Benito M, Abreu MD, Fernandez-Arrojo L, Plou FJ, Jimenez-Barbero J, Ballesteros A, Polaina J, Fernandez-Lobato M (2007) Characterization of a β-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. J Biotechnol 132:75–81

  25. Guio F, Rugeles LD, Rojas SE, Palomino MP, Camargo MC, Sanchez OF (2012) Kinetic modeling of fructooligosaccharide production using Aspergillus oryzae N74. Appl Biochem Biotechnol 167:142–163

    Article  CAS  Google Scholar 

  26. Vega-Paulino RJ, Zuniga-Hansen ME (2012) Potential application of commercial enzyme preparations for industrial production of short-chain fructooligosaccharides. J Mol Catal B Enzym 76:44–51

    Article  CAS  Google Scholar 

  27. Vega R, Hansen MEZ (2014) A new mechanism and kinetic model for the enzymatic synthesis of short-chain fructooligosaccharides from sucrose. Biochem Eng J 82:158–165

    Article  CAS  Google Scholar 

  28. Jung KH, Yun JW, Kang KR, Lim JY, Lee JH (1989) Mathematical model for enzymatic production of fructo-oligosaccharides from sucrose. Enzyme Microb Technol 11:491–494

    Article  CAS  Google Scholar 

  29. Lee WC, Chiang CJ, Tsai PY (1999) Kinetic modeling of fructooligosaccharide production catalyzed by immobilized β-fructofuranosidase. Ind Eng Chem Res 38:2564–2570

    Article  CAS  Google Scholar 

  30. Alvarado-Huallanco MB, Maugeri F (2011) Kinetic studies and modelling of the production of fructooligosaccharides by fructosyltransferase from Rhodotorula sp. Catal Sci Technol 1:1043–1050

    Article  CAS  Google Scholar 

  31. Kim MH, In MJ, Cha HJ, Yoo YJ (1996) An empirical rate equation for the fructooligosaccharide-producing reaction catalyzed by β-fructofuranosidase. J Ferment Bioeng 82:458–463

    Article  CAS  Google Scholar 

  32. Yun JW, Kim DH, Kim KW (1996) Theoretical calculation of the sugar concentrations during enzymatic production of fructooligosaccharides. Biotechnol Tech 10:871–874

    Article  CAS  Google Scholar 

  33. Lever M (1972) A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47:273–279

    Article  CAS  Google Scholar 

  34. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fugimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  35. Hang YD, Woodams EE (1995) Fructosyltransferase activity of commercial enzyme preparations used in fruit juice processing. Biotechnol Lett 17(7):741–744

    Article  CAS  Google Scholar 

  36. Ghazi I, Fernandez-Arrojo L, Garcia-Arellano H, Ferrer M, Ballesteros A, Plou FJ (2007) Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. J Biotechnol 128(1):204–211

    Article  CAS  Google Scholar 

  37. Sangeetha PT, Ramesh MN, Prapulla SG (2004) Production of fructo-oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77. Process Biochem 39:753–758

    Article  CAS  Google Scholar 

  38. Ganaiea MA, Rawat HK, Wania OA, Gupta US, Kango N (2014) Immobilization of fructosyltransferase by chitosan and alginate for efficient production of fructooligosaccharides. Process Biochem 49:840–844

    Article  Google Scholar 

  39. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI—a complex pathway simulator. Bioinformatics 22:3067–3074

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (PKB) gratefully acknowledges the Department of Biotechnology (DBT), Government of India for partial financial support against sanction order number: BT/PR14530/PID/06/599/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant K. Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, R., Palai, T. & Bhattacharya, P.K. Kinetics and model development for enzymatic synthesis of fructo-oligosaccharides using fructosyltransferase. Bioprocess Biosyst Eng 38, 2417–2426 (2015). https://doi.org/10.1007/s00449-015-1478-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1478-4

Keywords

Navigation