Skip to main content
Log in

Production of 1-kestose with intact mycelium of Aspergillus phoenicis containing sucrose-1F-fructosyltransferase

  • Biochemical engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Favourable reaction conditions for the enzymatic production of 1-kestose by sucrose-1F-fructosyltransferase, SFT (EC 2.4.1.99) from Aspergillus phoenicis CBS 294.80 mycelium were established. The intracellular enzyme SFT works best at 60°C, exhibits a relatively high thermostability and possesses an alkaline pH optimum. An invertase also present in the mycelium of A. phoenicis possesses an acidic pH optimum. Consequently, around pH 8.0 sucrose is converted mainly to 1-kestose and nystose while fructose is only formed in relatively small amounts. Under optimal conditions (55° C, pH 8.0 and an initial sucrose concentration of 750 g 1-1) a yield of about 300 g 1-kestose per 1.01 reaction mixture could be achieved after 8 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacon JSD (1954) The oligosaccharides produced by the action of yeast invertase preparations on sucrose. Biochem J 57:320–328

    Google Scholar 

  • Bhatia IS, Satyanarayana MN, Srinivason M (1955) Transfructosidase from Agave vera cruz Mill. Biochem J 61:171–174

    Google Scholar 

  • Dedonder R (1952) Les glycides du topinambour. Synthése de glucofructosanes in vitro par des extraits de divers organes de topinambour. Bull Soc Chim Biol 34:171–182

    Google Scholar 

  • DSM Stamicarbon (1989) Fructosyl transferase and the preparation of fructose oligomers therewith. US patent no. 4 849 356

  • DSM Stamicarbon (1981) Inulinase. US patent no 4 397 949

  • Edelman J, Bacon JSD (1951) Transfructodation in extracts of the tubers of Helianthus tuberosus L. Biochem J 49:529–540

    Google Scholar 

  • Edelman J, Dickerson AG (1966) The metabolism of fructose polymers in plants. Transfructosylation in tubers of Helianthus tuberosus L. Biochem J 98:787–794

    Google Scholar 

  • Edelman J, Jefford TG (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Heliantus tuberosus. New Phytol 67:517–531

    Google Scholar 

  • Hayashi S, Nonokuchi M, Imada K, Ueno H (1990) Production of a fructosyl-transferring enzyme by Aureobasidium sp. ATCC 20 524. J Ind Microbiol 5:395–400

    Google Scholar 

  • Hehre EJ (1951) Enzymic synthesis of polysaccharides: a biological type of polymerization. Adv Enzymol Biochem 11:297–337

    Google Scholar 

  • Henry RJ, Darbyshire B (1980) Sucrose:sucrose fructosyltransferase and fructan:fructan fructosyltransferase from Allium cepa. Phytochemistry 19:1017–1020

    Google Scholar 

  • Hestrin S, Geingold DS, Avigad G (1956) The mechanism of polysaccharide production from sucrose. Biochem J 64:340–351

    Google Scholar 

  • Hirayama M, Sumi N, Hidaka H (1989) Purification and properties of a fructo-oligosaccharide producing β-fructofuranosidase from Aspergillus niger ATCC 20 611. Agric Biol Chem 53:66–673

    Google Scholar 

  • Jacques NA (1985) Inhibition of the expression of cell-associated fructosyl transferase in Streptococcus salivarius by octyl-β-d-glucopyranoside. J Gen Microbiol 131:3243–3250

    Google Scholar 

  • Meiji Seika Kaisha (1981) Zoetstof. Dutch patent application no 8 101 587

  • Meiji Seika Kaisha (1982) Kalorienarmes Süssungsmittel und Verfahren zur Herstellung von Nahrungsmitteln und Getränken mit niedrigem Kaloriengehalt unter Verwendung desselben. German patent application no 3 232 531

  • Meiji Seika Kaisha (1987) Process for the preparation of inulase. European patent application no 0 240 741

  • Muramatsu M, Kainuma S, Miwa T, Nakatani T (1988) Structures of some fructo-oligosaccharides produced from sucrose by mycelia of Aspergillus sydowi IAM 2544. Agric Biol Chem 52:1303–1304

    Google Scholar 

  • Pazur JH (1952) Transfructosidation reactions of an enzyme of Aspergillus oryzae. J Biol Chem 199:217–225

    Google Scholar 

  • Reese ET, Avigad G (1966) Purification of levansucrase by precipitation with levan. Biochim Biophys Acta 113:79–83

    Google Scholar 

  • Shimura S, Itoh Y (1985) Fructose-transferring enzyme from Penicillium oxalicum and culture conditions for its production. Nippon Shokuhin Kogyo Gakkaishi 32:419–425

    Google Scholar 

  • Straathof AJJ, Kieboom APG, Bekkum H van (1986) Invertase-catalysed fructosyl transfer in concentrated solutions of sucrose. Carbohydr Res 146:154–159

    Google Scholar 

  • Yun JW, Jung KH, Oh JW, Lee JH (1990) Semibatch production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidium pullulans. Appl Biochem Biotechnol 24/25: 299–308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: J. A. M. van Balken

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Balken, J.A.M., van Dooren, T.J.G.M., van den Tweel, W.J.J. et al. Production of 1-kestose with intact mycelium of Aspergillus phoenicis containing sucrose-1F-fructosyltransferase. Appl Microbiol Biotechnol 35, 216–221 (1991). https://doi.org/10.1007/BF00184689

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00184689

Keywords

Navigation