Skip to main content
Log in

Green synthesis of biogenic silver nanomaterials using Raphanus sativus extract, effects of stabilizers on the morphology, and their antimicrobial activities

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The present study explores the reducing and capping potentials of aqueous Raphanus sativus root extract for the synthesis of silver nanomaterials for the first time in the absence and presence of two stabilizers, namely, water-soluble starch and cetyltrimethylammonium bromide (CTAB). The surface properties of silver nanoparticles (AgNPs) were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy dispersion X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) techniques. The mean size of AgNPs, ranging from 3.2 to 6.0 nm, could be facilely controlled by merely varying the initial [extract], [CTAB], [starch], and [Ag+] ions. The agglomeration number, average number of silver atoms per nanoparticle, and changes in the fermi potentials were calculated and discussed. The AgNPs were evaluated for their antimicrobial activities against different pathogenic organisms. The inhibition action was due to the structural changes in the protein cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. El-Sayed IH, Huang X, El-Sayed MA (2005) Nano Lett 5:829–834

    Article  CAS  Google Scholar 

  2. Oyelere AK, Chen PC, Huang X, El-Sayed IH, El-Sayed MA (2007) Bioconj Chem 18:1490–1497

    Article  CAS  Google Scholar 

  3. Caruthers SD, Wickline SA, Lanza GM (2007) Curr Opin Biotechnol 18:26–30

    Article  CAS  Google Scholar 

  4. Nadagouda MN, Varma RS (2007) Biomacromolecules 8:2762–2767

    Article  CAS  Google Scholar 

  5. He J, Qi X, Miao Y, Wu HL, He N, Zhu JJ (2010) Nanomedicine Lond 5:1129–1138

    Article  Google Scholar 

  6. Lin J, Chen R, Feng S, Pan J, Li Y, Chen G, Cheng M, Huang Z, Yu Y, Zeng H (2011) Nanomedicine 7:655–663

    Article  CAS  Google Scholar 

  7. Bakshi MS (2011) J Phys Chem C 115:13947–13960

    Article  CAS  Google Scholar 

  8. Hleb EYL, Wagner DS, Brenner MK, Lapotko DO (2012) Biomater 33:5441–5450

    Article  Google Scholar 

  9. Heidari Z, Sariri R, Salouti M (2014) J Photochem. Photobiol B: Biol 130:40–46

    Article  CAS  Google Scholar 

  10. Murawala P, Tirmale A, Shiras A, Prasad BLV (2014) Mater Sci Eng 34:158–167

    Article  CAS  Google Scholar 

  11. Armendariz V, Gardea-Torresdey JL, Jose-Yacaman M, Gonzalez J, Herrera I, Parsons JG July30–Aug1 (2002) in Proceedings—waste research technology conference at the Kansas City Mariott-Country Club Plaza

  12. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Langmuir 19:357–1361

    Article  Google Scholar 

  13. Khullar P, Singh V, Mahal A, Dave PN, Thakur S, Kaur G, Singh J, Kamboj SS, Bakshi MS (2012) J Phys Chem C 116:8834–8843

    Article  CAS  Google Scholar 

  14. Mahal A, Khullar P, Kumar H, Kaur G, Singh N, Jelokhani-Niaraki M, Bakshi MS (2013) ACS Sustainable Chem Eng 1:627–639

    Article  CAS  Google Scholar 

  15. Sriram MI, Kanth SBM, Kalishwaralal K, Gurunathan S (2010) Internat J Nano med 5:753–762

    CAS  Google Scholar 

  16. Sanpui P, Chattopadhyay A, Ghosh SS (2011) ACS Appl Mater Interf 3:218–228

    Article  CAS  Google Scholar 

  17. Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH (2013) BioMed Res Internat 2013:1–10

    Article  Google Scholar 

  18. Shan W, Pan Y, Fang H, Guo M, Nie Z, Huang Y, Yao S (2014) Talanta 126:130–135

    Article  CAS  Google Scholar 

  19. Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S (2014) Theranostics 4:316–335

    Article  Google Scholar 

  20. Ramanathan R, O’Mullane AP, Parikh RY, Smooker PM, Bhargava SK, Bansal V (2011) Langmuir 27:714–719

    Article  CAS  Google Scholar 

  21. Parikh RY, Ramanathan R, Coloe PJ, Bhargava SK, Patole MS, Shouche YS, Bansal V (2011) PLoS ONE 6:e21401

    Article  CAS  Google Scholar 

  22. Bansal V, Ramanathan R, Bhargava SK (2011) Aust J Chem 64:279–293

    Article  CAS  Google Scholar 

  23. Bansal V, Li V, O’Mullane AP, Bhargava SK (2010) Cryst Eng Comm 12:4280–4286

    Article  CAS  Google Scholar 

  24. Dastjerdi R, Montazer M (2010) Colloids Surf, B 79:5–18

    Article  CAS  Google Scholar 

  25. Dallas P, Sharma VK, Zboril R (2011) Advances Colloid Interface Science 166:119–135

    Article  CAS  Google Scholar 

  26. Bansal V, Bharde A, Ramanathan R, Bhargava SK (2012) Advances Colloid Interface Science 179–182:150–168

    Article  Google Scholar 

  27. Ong C, Lim JZ, Ng CT, Li JJ, Yung LY, Bay BH (2013) Curr Med Chem 20:772–781

    CAS  Google Scholar 

  28. Beevi SS, Mangamoori LN, Subathra M, Edula JR (2010) Plant Foods Hum Nutr 65:200–209

    Article  Google Scholar 

  29. Kim WK, Kim JH, Jeong H, Chun YH, Kim SH, Cho KJ, Chang MJ (2011) Nutr Res Pract 5:288–293

    Article  Google Scholar 

  30. Lu AH, Salabas EL, Schuth F (2007) Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  31. Bashir O, Hussain S, Khan Z, AL-Thabaiti SA (2014) Carbohydr Polym 107:167–173

    Article  CAS  Google Scholar 

  32. Hussain S, Bashir O, Khan Z, AL-Thabaiti SA (2014) J Molecular Liquids 199:489–494

  33. Sastry M, Rao M, Ganesh KN (2002) Acc Chem Res 35:847–855

    Article  CAS  Google Scholar 

  34. Lundqvist M, Sethson I, Johnsson BH (2004) Langmuir 20:10639–10647

    Article  CAS  Google Scholar 

  35. Khan Z, Al-Thabaiti SA, Obaid AY, Khan ZA, Al-Youbi AO (2012) J Colloid Interface Sci 367:101–108

    Article  CAS  Google Scholar 

  36. Bunton CA, Nome F, Quina FH, Romsted LS (1991) Accounts Chem Res 24:357–364

    Article  CAS  Google Scholar 

  37. Al-Thabaiti SA, Obaid AY, Hussain S, Khan Z (2015) Arabian J Chem 8:538–544

    Article  CAS  Google Scholar 

  38. Chalmers JM, Griffiths PR (2002) Handbook of Vibrational Spectroscopy. Wiley, New York

    Google Scholar 

  39. Klabunde KJ (2001) Nanoscale Materials in Chemistry. Wiley, New York

    Book  Google Scholar 

  40. Raveendran P, Fu J, Wallen SL (2003) J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  41. Xiong J, Wang Y, Xue Q, Wu X (2011) Green Chem 13:900–904

    Article  CAS  Google Scholar 

  42. Goia DV, Matijevic E (1998) New J Chem 22:1203–1215

  43. Cheng L-C, Huang J-H, Chen HM, Lai T-C, Yang K-Y, Liu R-S, Hsiao M, Chen C-H, Her L-J, Tsai DP (2012) J Mater Chem 22:2244–2253

    Article  Google Scholar 

  44. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) J Am Chem Soc 120:12674–12675

    Article  CAS  Google Scholar 

  45. Henglein A (1993) J Phys Chem 97:5457–5471

    Article  CAS  Google Scholar 

  46. Keuk-Jun K, Woo SS, Bo KS, Seok-Ki M, Jong-Soo C, Jong GK, Dong GL (2009) Biometals 22:235–242

    Article  Google Scholar 

  47. Guzmán MG, Dille J, Godet S (2009) Int J Chem Biol Eng 2:101–111

    Google Scholar 

  48. Rai M, Yadav A, Gade A (2009) Biotechnol Adv 27:76–83

    Article  CAS  Google Scholar 

  49. Yamanaka M, Hara K, Kudo J (2005) Appld Env Microbiol 71:7589–7593

    Article  CAS  Google Scholar 

  50. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Lett Appl Microbiol 25:279–283

    Article  CAS  Google Scholar 

  51. Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T (2003) Appl Environ Microbiol 69:4278–4281

    Article  CAS  Google Scholar 

  52. Morones JR, Elechiguerra JL, Camacho A, Ramirez JT (2005) Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  53. Rahisuddin, AL-Thabaiti SA, Khan Z, Manzoor N (2015) Bioprocess Biosyst Eng 38:1773–1781

    Article  CAS  Google Scholar 

  54. Sondi I, Salopek-Sondi B (2004) J Colloid Interf Sci 275:177–182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaheer Khan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.N., Khan, T.A., Khan, Z. et al. Green synthesis of biogenic silver nanomaterials using Raphanus sativus extract, effects of stabilizers on the morphology, and their antimicrobial activities. Bioprocess Biosyst Eng 38, 2397–2416 (2015). https://doi.org/10.1007/s00449-015-1477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1477-5

Keywords

Navigation