Skip to main content

Advertisement

Log in

Oxygen transfer in a pressurized airlift bioreactor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Airlift bioreactors (ALBs) offer advantages over conventional systems, such as simplicity of construction, reduced risk of contamination, and efficient gas–liquid dispersion with low power consumption. ALBs are usually operated under atmospheric pressure. However, in bioprocesses with high oxygen demand, such as high cell density cultures, oxygen limitation may occur even when operating with high superficial gas velocity and air enriched with oxygen. One way of overcoming this drawback is to pressurize the reactor. In this configuration, it is important to assess the influence of bioreactor internal pressure on the gas hold-up, volumetric oxygen transfer coefficient (\(k_{\text{L}} a\)), and volumetric oxygen transfer rate (\({\text{OTR}}\)). Experiments were carried out in a concentric-tube airlift bioreactor with a 5 dm3 working volume, equipped with a system for automatic monitoring and control of the pressure, temperature, and inlet gas flow rate. The results showed that, in disagreement with previous published results for bubble column and external loop airlift reactors, overpressure did not significantly affect \(k_{\text{L}} a\) within the studied ranges of pressure (0.1–0.4 MPa) and superficial gas velocity in the riser (0.032–0.065 m s−1). Nevertheless, a positive effect on \({\text{OTR}}\) was observed: it increased up to 5.4 times, surpassing by 2.3 times the oxygen transfer in a 4 dm3 stirred tank reactor operated under standard cultivation conditions. These results contribute to the development of non-conventional reactors, especially pneumatic bioreactors operated using novel strategies for oxygen control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(a\) :

Gas–liquid interfacial area per unit of liquid volume (m−1)

A :

Gas–liquid interfacial area (m2)

ALB:

Concentric-tube airlift bioreactor

b :

Parameter of Eq. 4 (\({\text{s}}^{c - 1} \,{\text{m}}^{ - c} \,{\text{Pa}}^{ - d}\))

c, d :

Parameters of Eq. 4 (dimensionless)

\(d_{\text{B}}\) :

Mean bubble diameter (m)

\({\text{DOT}}\) :

Dissolved oxygen tension (percent saturation)

\({\text{DOT}}_{ 0}\) :

Initial dissolved oxygen tension (percent saturation)

\({\text{DOT}}_{\text{S}}\) :

Terminal dissolved oxygen tension (percent saturation)

DOC:

Dissolved oxygen concentration (mol m−3)

\({\text{DOC}}^{ *}\) :

Saturated dissolved oxygen concentration (mol m−3)

\(H_{{{\text{O}}_{ 2} }}\) :

Henry’s law constant (m3 Pa mol−1)

\(k_{\text{e}}\) :

Time constant of the oxygen sensor probe (s−1)

\(k_{\text{L}}\) :

Mass transfer coefficient (m−1 s−1)

\(k_{\text{L}} a\) :

Volumetric oxygen transfer coefficient (s−1)

\(\dot{n}\) :

Molar gas flow rate (mol s−1)

n :

Stirrer speed (rpm)

\({\text{OTR}}\) :

Volumetric oxygen transfer rate (mmol m−3 s−1)

\(p\) :

Absolute pressure (Pa)

\(p_{\text{cal}}\) :

Calibration pressure (Pa)

Q :

Volumetric gas flow rate (m3 s−1)

R :

Universal gas constant (m3 Pa K−1 mol−1)

STR:

Stirred tank reactor

T :

Temperature (K)

\(t\) :

Time (s)

\(t_{0}\) :

Initial time (s)

\(u_{\text{G}}\) :

Superficial gas velocity (m s−1)

\(u_{\text{GR}}\) :

Superficial gas velocity in the riser (m s−1)

\(u_{\text{L}}\) :

Average liquid circulation velocity (m s−1)

\(u_{\text{R}}\) :

Relative velocity at the gas–liquid interface (m s−1)

\(V_{\text{R}}\) :

Working volume of the bioreactor (dm3)

vvm:

Volume per volume per minute (min−1)

\(y_{{{\text{O}}_{ 2} }}\) :

Oxygen mole fraction (dimensionless)

ε :

Gas hold-up (dimensionless)

\(\phi_{\text{AIR}}\) :

Specific air flow rate (vvm)

References

  1. Chisti MY (1989) Airlift Bioreactors, 1st edn. Elsevier Applied Science, New York

    Google Scholar 

  2. Kracke-Helm HA, Rinas U, Hitzmann B, Shügerl K (1991) Cultivation of recombinant Escherichia coli and production of fusion in 60-L bubble column and airlift tower loop reactors. Enzyme Microbiol Technol 13:554–564

    Article  CAS  Google Scholar 

  3. Gavrilescu M, Roman PV (1998) Performance of air-lift bioreactor in the cultivation of some antibiotic production microorganism. Acta Biotechnol 18:201–209

    Article  CAS  Google Scholar 

  4. Letzel HM, Schouten JC, Krishna R, Van den Bleek CM (1999) Gas holdup and mass transfer in bubble column reactors operated at elevated pressure. Chem Eng Sci 54:2237–2246

    Article  CAS  Google Scholar 

  5. Letzel M, Stankiewicz A (1999) Gas hold-up and mass transfer in gas-lift reactors operated at elevated pressure. Chem Eng Sci 54:5153–5157

    Article  CAS  Google Scholar 

  6. Oyevaar MH, Westerterp KR (1989) Mass transfer phenomena and hydrodynamics in agitated gas liquid reactors and bubble columns at elevated pressures: state of the art. Chem Eng Process 25:85–98

    Article  CAS  Google Scholar 

  7. Wilkinson PM, Haringa H, Van Dierendonck LLV (1994) Mass transfer and bubble size in a bubble column under pressure. Chem Eng Sci 49:1417–1427

    Article  CAS  Google Scholar 

  8. Lau R, Peng W, Velazquez-Vargas LG, Yang GQ, Fan LS (2004) Gas-liquid mass transfer in high-pressure bubble columns. Ind Eng Chem Res 43:1302–1311

    Article  CAS  Google Scholar 

  9. Han L, Al-Dahhan MH (2007) Gas–liquid mass transfer in a high pressure bubble column reactor with different sparger designs. Chem Eng Sci 62:131–139

    Article  CAS  Google Scholar 

  10. Kitscha J, Kocamustafaogullari G (1989) Breakup criteria for fluid particles. Int J Multiph Flow 15:573–588

    Article  CAS  Google Scholar 

  11. Wilkinson PM, Dierendonck LLV (1990) Pressure and gas density effects on bubble break-up and gas hold-up in bubble columns. Chem Eng Sci 45:2309–2315

    Article  CAS  Google Scholar 

  12. Wilkinson PM (1991) Physical aspects and scale-up of high pressure bubble columns. Ph.D. thesis, University of Groningen, The Netherlands

  13. Talaia MAR (2008) Terminal velocity of a bubble rise in a liquid column. World Acad Sci Eng Technol 22:264–268

    Google Scholar 

  14. Studier FW (2005) Protein production by auto-induction in high-density shaking culture. Protein Expr Purif 41:313–322

    Article  Google Scholar 

  15. Silva AJ, Horta ACL, Vélez AM, Iemma MRC, Sargo CR, Giordano RLC, Marques Novo MT, Giordano RC, Zangirolami TC (2013) Non-conventional induction strategies for production of subunit swine erysipelas vaccine antigen in rE. coli fed-batch cultures. SpringerPlus 2:322–2013

    Article  Google Scholar 

  16. Vélez AM, Silva AJ, Horta AC, Sargo CR, Campani G, Silva GG, Giordano RLC, Zangirolami TC (2014) High-throughput strategies for penicillin G acylase production in rE. coli fed-batch cultivations. BMC Biotechnol 14:6–2014

    Article  Google Scholar 

  17. Badino AC, Hokka CO, Cerri MO (2004) Internal-loop pneumatic bioreactor and its using. Braz Pat PI 0404703–6:A2

    Google Scholar 

  18. Thomasi SS, Cerri MO, Badino AC (2010) Average shear rate in three pneumatic bioreactors. Bioprocess Biosyst Eng 33:979–988

    Article  CAS  Google Scholar 

  19. Horta ACL, Silva AJ, Sargo CR, Velez AM, Gonzaga MC, Gonçalves VM, Giordano RC, Zangirolami TC (2014) A supervision and control tool based on artificial intelligence for high cell density cultivations. Braz J Chem Eng 31:457–468

    Article  Google Scholar 

  20. Linek V, Benes P, Vacek V (1989) Dynamic pressure method for k L a measurement in large-scale bioreactors. Biotechnol Bioeng 33:1406–1412

    Article  CAS  Google Scholar 

  21. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  22. Shah YT, Kelkar BG, Godbole SP, Deckwer WD (1982) Design parameters estimations for bubble column reactors. AIChE J 28:353–379

    Article  CAS  Google Scholar 

  23. Shariati FP, Bonakdarpour B, Mehrnia MR (2007) Hydrodynamics and oxygen transfer behavior of water in diesel microemulsions in a draft tube airlift bioreactor. Chem Eng Process 46:334–342

    Article  CAS  Google Scholar 

  24. Cerri MO, Policarpo LM, Badino AC (2010) Gas hold-up and mass transfer in three geometrically similar internal loop airlift reactors using Newtonian fluids. Int J Chem Reactor Eng 8:1542–6580

    Article  Google Scholar 

  25. Jones AG (1985) Liquid circulation in a draft-tube bubble-column. Chem Eng Sci 40:449–462

    Article  CAS  Google Scholar 

  26. Blažej M, Kiša M, Markošet J (2004) Scale influence on the hydrodynamics of an internal loop airlift reactor. Chem Eng Process 43:1519–1527

    Article  Google Scholar 

  27. Shuler M, Kargi F (2002) Bioprocess Engineering: Basic Concepts, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  28. Hung GW, Dinius RH (1972) Diffusivity of oxygen in electrolyte solutions. J Chem Eng Data 17(4):449–451

    Article  CAS  Google Scholar 

  29. Jamnongwong M, Loubiere K, Dietrich N, Hébrard G (2010) Experimental study of oxygen diffusion coefficients in clean water containing salt, glucose or surfactant: consequences on the liquid-side mass transfer coefficients. Chem Eng J 165:758–768

    Article  CAS  Google Scholar 

  30. Cerri MO, Futiwaki L, Jesus CDF, Cruz AJG, Badino AC (2008) Average shear rate for non-Newtonian fluids in a concentric-tube airlift bioreactor. Biochem Eng J 39:51–57

    Article  CAS  Google Scholar 

  31. Himmelblau DM (1970) Process Analysis by Statistical Methods, 1st edn. John Wiley & Sons, New York

    Google Scholar 

  32. Cerri MO, Baldacin JC, Cruz AJG, Hokka CO, Badino AC (2010) Prediction of mean bubble size in pneumatic reactors. Biochem Eng J 53:12–17

    Article  CAS  Google Scholar 

  33. Bustamante MCC, Cerri MO, Badino AC (2013) Comparison between average shear rates in conventional bioreactor with Rushton and Elephant ear impellers. Chem Eng Sci 90:92–100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank FAPESP (The State of São Paulo Research Foundation) (Grant Processes 2008/05207-4 and 2011/16605-3) and CAPES (Brazilian Federal Agency for Support and Evaluation of Graduate Education) for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Cristina Zangirolami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campani, G., Ribeiro, M.P.A., Horta, A.C.L. et al. Oxygen transfer in a pressurized airlift bioreactor. Bioprocess Biosyst Eng 38, 1559–1567 (2015). https://doi.org/10.1007/s00449-015-1397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1397-4

Keywords

Navigation