Skip to main content
Log in

Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Some of the noxious atmospheric pollutants such as nitrogen and sulfur dioxides come from the fossil fuel combustion. Biodesulfurization and biodenitrogenation are processes which remove those pollutants through the action of microorganisms. The ability of sulfur and nitrogen removal by the strain Rhodococcus erythropolis ATCC 4277 was tested in a biphasic system containing different heavy gas oil concentrations in a batch reactor. Heavy gas oil is an important fraction of petroleum, because after passing through, the vacuum distillation is incorporated into diesel oil. This strain was able to remove about 40 % of the nitrogen and sulfur present in the gas heavy oil. Additionally, no growth inhibition occurred even when in the presence of pure heavy gas oil. Results present in this work are considered relevant for the development of biocatalytic processes for nitrogen and sulfur removal toward building feasible industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oyama ST, Zhao H, Gott T, Zhao H, Lee Y (2008) Transition metal phosphide hydroprocessing catalysts: a review. Catal Today 143:94–107

    Article  Google Scholar 

  2. Dinamarca MA, Rojas A, Baeza P, Espinoza G, Ibacache-Quiroga C, Ojeda J (2014) Optimizing the biodesulfurization of gas oil by adding surfactants to immobilized cell systems. Fuel 116:237–241

    Article  CAS  Google Scholar 

  3. Onaka T, Konishi J, Ishii Y, Maruhashi K (2001) Desulfurization characteristics of termophilic Paenibacillus sp. strain A11-2 against asymmetrically alkylated dibenzothiophenes. J Biosci Bioeng 92:193–196

    Article  CAS  Google Scholar 

  4. Alves L, Mesquita E, Gírio FM (1999) Dessulfurização bacteriana de combustíveis fósseis. Bol Biotech 62:3–8

    Google Scholar 

  5. Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68

    Article  CAS  Google Scholar 

  6. Song C (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal Today 88:211–263

    Article  Google Scholar 

  7. Gupta N, Roychoudhury PK, Deb JK (2004) Biotechnology of desulfurization of diesel: prospects and challenges. Appl Environ Microb 66:356–366

    Google Scholar 

  8. Le Borgne S, Quintero R (2003) Biotechnological processes for the refining of petroleum. Fuel Process Technol 81:155–169

    Article  Google Scholar 

  9. Afferden MV, Schacht S, Klein J, Trüper HG (1990) Degradation of dibenzothiophene by Brevibacterium sp. Arch Microbiol 153(4):324–328

    Article  Google Scholar 

  10. Maghsoudi S, Kheirolomoom A, Vossoughi S, Tanaka E, Katoh S (1999) Selective desulfurization of dibenzothiophene by newly isolated Corynebacterium sp. strain P32C1. Biochem Eng J 5:11–16

    Article  Google Scholar 

  11. Maghsoudi S, Vossoughi S, Kheirolomoom A, Tanaka E, Katoh S (2001) Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp. strain P32C1. Biochem Eng J 8:151–156

    Article  CAS  Google Scholar 

  12. Izumi Y, Ohshiru T (2001) Purification and characterization of enzymes involved in desulfurization of dibenzotiophene in fossil fuels. J Mol Catal A Chem 11(1–4):1061–1064

    Article  CAS  Google Scholar 

  13. Keulen FV, Correia CN, Da Fonseca MM (1997) Solvent selection for the biotransformation of terpenes by Pseudomonas putida. J Mol Catal A Chem 5(1–4):295–299

    Google Scholar 

  14. Chang JH, Chang YK, Ryu HW, Chang HN (2000) Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2. FEMS Microbiol Lett 182:309–312

    Article  CAS  Google Scholar 

  15. Kirimura K, Furuya T, Nishii Y, Ishii Y, Kino K, Usami S (2001) Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilis WU-S2B. J Biosci Bioeng 91(3):262–266

    Article  CAS  Google Scholar 

  16. McFarland BL (1999) Biodesulfurization. Curr Opin Biotech 2(3):257–264

    CAS  Google Scholar 

  17. Setti L, Lanzarini G, Pifferi PG (1997) Whole cell biocatalysis for an oil desulfurization process. Fuel Process Technol 52:145–153

    Article  CAS  Google Scholar 

  18. Kilbane JJ II (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotech 17:305–314

    Article  CAS  Google Scholar 

  19. Gray KA, Rhee S, Chang JH, Chang YK, Chang HN (1996) Biochemical characterization of the biodesulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8—potential role in fossil fuel desulfurization. Abstr Pap Am Chem S 212:54

    Google Scholar 

  20. Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotech 11:540–546

    Article  CAS  Google Scholar 

  21. Folsom BR, Schieche DR, DiGrazia PM, Werner J, Palmer S (1999) Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl Environ Microb 65(11):4967–4972

    CAS  Google Scholar 

  22. Guchhait S, Biswas D, Bhattacharya P, Chowdhury R (2005) Bio-desulfurization of model organo-sulfur compounds and hydrotreated diesel—experiments and modeling. Chem Eng J 112:145–151

    Article  CAS  Google Scholar 

  23. Maass D, Oliveira D, Souza AAU, Souza SMAGU (2014) Biodesulfurization of a system containing synthetic fuel using Rhodococcus erythropolis ATCC 4277. Appl Biochem Biotechnol 174:2079–2085

    Article  CAS  Google Scholar 

  24. Li G, Li S, Qu S, Liu Q, Ma T, Zhu L, Liang F, Liu R (2008) Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp. Biotechnol Lett 30(10):1759–1764

    Article  CAS  Google Scholar 

  25. Naito M, Kawamoto T, Fujino K, Kobayashi M, Marushashi K, Tanaka A (2001) Long-term repeated biodesulfurization by immobilized Rhodococcus erythropolis KA2-5-1 cells. Appl Microbiol Biotechnol 55:374–378

    Article  CAS  Google Scholar 

  26. Yu B, Xu P, Zhu S, Cai X, Wang Y, Li L, Li F, Liu X, Ma C (2006) Selective biodegradation of S and N heterocycles by a recombinant Rhodococcus erythropolis strain containing carbazole dioxygenase. Appl Environ Microb 72(3):2235–2238

    Article  CAS  Google Scholar 

  27. Zhang Q, Tong MY, Li YS, Gao HJ, Fang XC (2007) Extensive desulfurization of diesel by Rhodococcus erythropolis. Biotechnol Lett 29:123–127

    Article  Google Scholar 

  28. Castorena G, Suarez C, Valdez I, Amador G, Fernandez L (2002) Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains. FEMS Microbiol Lett 215:157–161

    Article  CAS  Google Scholar 

  29. Dinamarca MA, Ibacache-Quiroga C, Baeza P, Galvez S, Villarroel M, Olivero P, Ojeda J (2010) Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption. Bioresour Technol 101:2375–2378

    Article  CAS  Google Scholar 

  30. Yang J, Hu Y, Zhao D, Wang S, Lau PCK, Marison IW (2007) Two-layer continuous-process design for the biodesulfurization of diesel oils under bacterial growth conditions. Biochem Eng J 37:212–218

    Article  CAS  Google Scholar 

  31. Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T (2000) Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuel 14:1232–1239

    Article  CAS  Google Scholar 

  32. Ma C, Feng J, Zeng Y, Cai X, Sun B, Zhang Z, Blankespoor HD, Xu P (2006) Methods for the preparation of a biodesulfurization biocatalyst using Rhodococcus sp. Chemosphere 65:165–169

    Article  CAS  Google Scholar 

  33. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemoth 48:5–16

    Article  CAS  Google Scholar 

  34. Davoodi-Dehaghani F, Vosoughi M, Ziaee AA (2001) Biodesulfurization of dibenzothiophene by a newly isolated Rhodococcus erythropolis strain. Bioresour Technol 101:1102–1105

    Article  Google Scholar 

  35. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Environ Microb 71:961–973

    Google Scholar 

  36. Whyte LG, Slagman SJ, Pietrantonio F, Bourbonniere L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microb 65:2961–2968

    CAS  Google Scholar 

  37. Carvalho CCCR, Parreño-marchante B, Neumann G, Da Fonseca MMR (2005) Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl Environ Microb 67:383–388

    CAS  Google Scholar 

  38. Carvalho CCCR, Poretti A, Da Fonseca MMR (2004) Solvent toxicity in organic-aqueous systems analyzed by multivariate analysis. Appl Environ Microb 26:361–375

    CAS  Google Scholar 

  39. Carvalho CCCR, Da Fonseca MMR (2005) The remarkable Rhodococcus erythropolis. Appl Environ Microb 67:715–726

    Google Scholar 

  40. Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian Petroleum Agency—ANP, through PRH-09/MECPETRO, and CNPq for the financial support and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. A. Guelli Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maass, D., Todescato, D., Moritz, D.E. et al. Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277. Bioprocess Biosyst Eng 38, 1447–1453 (2015). https://doi.org/10.1007/s00449-015-1386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1386-7

Keywords

Navigation