Skip to main content

Advertisement

Log in

Optimization of complex medium composition for heterotrophic cultivation of Euglena gracilis and paramylon production

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Heterotrophic cultivation of Euglena gracilis was carried out on synthetic (Hutner medium) and complex cultivation media in order to optimize production of β-1,3-glucan (paramylon). For preparation of complex media, various industrial by-products (e.g., molasses, corn steep solid, yeast extract, and beef extract) were used with or without addition of pure compounds [glucose, galactose, fructose, lactose, maltose, sucrose, and (NH4)2HPO4]. Heterotrophic cultivation of E. gracilis was performed in Erlenmeyer flasks and additionally confirmed during research in the stirred tank bioreactor. The results clearly show that E. gracilis can easily metabolize glucose and fructose as carbon sources and corn steep solid as complex nitrogen and growth factors source for biomass growth and paramylon synthesis. Furthermore, it was also proved that addition of (NH4)2HPO4, beef extract, or gibberellic acid did not have positive effect on the biomass growth and paramylon synthesis. After optimization of complex medium composition and verification in the stirred tank bioreactor, it was concluded that medium composed of glucose (20 g/L) and corn steep solid (30 g/L) is the most suitable complex medium for industrial cultivation of E. gracilis and paramylon production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Osumi M (1998) The ultrastructure of yeast: cell wall structure and formation. Micron 29:207–233

    Article  CAS  Google Scholar 

  2. Barsanti L, Vismara R, Passarelli V, Gualtieri PJ (2001) Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis: effects of growth conditions. J Appl Phycol 13:59–65

    Article  CAS  Google Scholar 

  3. Chae SR, Hwang EJ, Shin HS (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour Technol 97:322–329

    Article  CAS  Google Scholar 

  4. Ogbonna JC, Tomiyama S, Tanaka H (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J Appl Phycol 10:67–74

    Article  CAS  Google Scholar 

  5. Ogbonna JC, Tomiyama S, Tanaka H (1999) Production of α-tocopherol by sequential heterotrophic–photoautotrophic cultivation of Euglena gracilis. J Biotechnol 70:213–221

    Article  CAS  Google Scholar 

  6. Kusmic C, Barsacchi R, Barsanti L, Gualtieri P, Passarelli V (1999) Euglena gracilis as source of the antioxidant vitamin E: effects of culture conditions in the wild strain and in the natural mutant WZSL. J Appl Phycol 10:555–559

    Article  Google Scholar 

  7. Rodriguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernandez G, Moreno-Sanchez R (2010) Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109:2160–2172

    Article  CAS  Google Scholar 

  8. Meena DK, Das P, Kumar S, Mandal SC, Prusty AK, Singh SK, Akhtar MS, Behera BK, Kumar K, Pal AK, Mukherjee SC (2013) Beta-glucan: an ideal immunostimulant in aquaculture. Fish Physiol Biochem 39:431–457

    Article  CAS  Google Scholar 

  9. Watanabe T, Shimada R, Matsuyama A, Yuasa M, Sawamura H, Yoshida E, Suzuki K (2013) Antitumor activity of the β-glucan paramylon from Euglena against preneoplastic colonic aberrant crypt foci in mice. Food Function 4:1685–1690

    Article  CAS  Google Scholar 

  10. Barsanti L, Passarelli V, Evangelista V, Frassanito AM, Gualtieri P (2011) Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Nat Prod Rep 28:457–466

    Article  CAS  Google Scholar 

  11. Koizumi N, Sakagami H, Utsumi A, Fujinaga S, Takeda M, Asano K, Sugawara I, chikawa S, Kondo H (1993) Anti-HIV (human immunodeficiency virus) activity of sulfated paramylon. Antiviral Res 21:1–14

    Article  CAS  Google Scholar 

  12. Osafune T, Sumida S, Ehara T, Ueno N, Hase E, Schiff JA (1990) Lipid (wax) and paramylum as sources of carbon and energy for the early development of proplastids in dark-grown Euglena gracilis cells transferred to an inorganic medium. J Electron Microsc 39:372–381

    CAS  Google Scholar 

  13. Šantek B, Felski M, Friehs K, Lotz M, Flaschel E (2010) Production of paramylon, a β-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on potato liquor. Eng Life Sci 10:165–170

    Google Scholar 

  14. Šantek B, Friehs K, Lotz M, Flaschel E (2012) Production of paramylon, a β-1,3-glucan, by heterotrophic growth of Euglena gracilis on potato liquor in fed-batch and repeated batch mode of cultivation. Eng Life Sci 12:89–94

    Article  Google Scholar 

  15. Kennedy M, Krouse D (1999) Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biol 23:456–475

    Article  CAS  Google Scholar 

  16. Manivasagan P, Venkatesan J, Kang KH, Sivakumar K, Park SJ, Kim SK (2015) Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. Int J Biol Macromol 72:71–78

    Article  CAS  Google Scholar 

  17. Turki S (2013) Towards the development of systems for high-yield production of microbial lipases. Biotechnol Lett 35:1551–1560

    Article  CAS  Google Scholar 

  18. Li J, Baral NR, Jha AK (2014) Acetone-butanol-ethanol fermentation of corn stover by Clostridium species: present status and future perspectives. World J Microbiol Biotechnol 30:1145–1157

    Article  CAS  Google Scholar 

  19. Yang YH, Brigham CJ, Budde CF, Boccazzi P, Willis LB, Hassan MA, Yusof ZAM, Rha CK, Sinskey AJ (2010) Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Appl Microbiol Biotechnol 87:2037–2045

    Article  CAS  Google Scholar 

  20. Wang W, Han F, Li Y, Wu Y, Wang J, Pan R, Shen G (2014) Medium screening and optimization for photoautotrophic culture of Chlorella pyrenoidosa with high lipid productivity indoors and outdoors. Bioresour Technol 170:395–403

    Article  CAS  Google Scholar 

  21. Farrell A, McLoughlin N, Milne JJ, Marison IW, Bones J (2014) Application of multi-omics techniques for bioprocess design and optimization in Chinese hamster ovary cells. J Proteome Res 13:3144–3159

    Article  CAS  Google Scholar 

  22. Almo SC, Love JD (2014) Better and faster: improvements and optimization for mammalian recombinant protein production. Curr Opin Struct Biol 26:39–43

    Article  CAS  Google Scholar 

  23. Hutner SH, Zahalsky AC, Aaronson S, Baker H, Frank O (1966) Culture media for Euglena gracilis. In: Prescott DM (ed) Methods in cell physiology, vol 2. Academic Press, New York London, pp 217–228

    Google Scholar 

  24. Vandamme EJ (2009) Agro-industrial residue utilization for industrial biotechnology products. In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. Springer, Dordrecht, pp 3–12

    Chapter  Google Scholar 

  25. Posten CH, Cooney CL (1993) Growth of microorganisms. In: Rehm HJ, Reed G, Puhler A, Stadler P, Sahm H (eds) Biotechnology, vol 1, 2nd edn., Biological fundamentalsVCH, Weinheim, pp 111–162

    Chapter  Google Scholar 

  26. Mousdale DM (1997) The analytical chemistry of microbial cultures. In: Mousdale DM (ed) Applied microbial physiology. IRL, New York, pp 165–192

    Google Scholar 

  27. Porchia AC, Fiol DF, Salerno GL (1999) Differential synthesis of sucrose and trehalose in Euglena gracilis cells during growth and salt stress. Plant Sci 149:43–49

    Article  CAS  Google Scholar 

  28. Baumer D, Preisfeld A, Ruppel H (2001) Isolation and characterization of paramylon synthase from Euglena gracilis (Euglenophyceae). J Phycol 37:38–46

    Article  CAS  Google Scholar 

  29. Buetow D (1999) Euglena. Encyclopaedia of life sciences, A1964. Macmillan, London, pp 1–8

    Google Scholar 

  30. Šantek B, Felski M, Friehs K, Lotz M, Flaschel E (2009) Production of paramylon, a β-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on a synthetic medium. Eng Life Sci 9:23–28

    Article  Google Scholar 

  31. Conforti V (1998) Morphological changes of Euglenophyta in response to organic enrichment. Hydrobiol 369(370):277–285

    Article  Google Scholar 

  32. Shilo M (1971) Toxins of chrysophyceae. In: Kadis S, Ciegler A, Ajl SJ (eds) Microbial toxins, vol 7. Academic Press, New York, pp 67–103

    Google Scholar 

  33. Felski M (2004) Fermentative Gewinnung von Paramylon durch Euglena gracilis in konditioniertem Kartoffelfruchtwasser. PhD thesis, University of Bielefeld

  34. Azizullah A, Richter P, Häder DP (2012) Responses of morphological, physiological, and biochemical parameters in Euglena gracilis to 7-days exposure to two commonly used fertilizers DAP and urea. J Appl Phycol 24:21–33

    Article  CAS  Google Scholar 

  35. Liu Y, Shi XR, Cui YB, Li M (2013) Toxic effects of high concentrations of ammonia on Euglena gracilis. Huanjing Kexue/Environ Sci 34:4386–4391

    CAS  Google Scholar 

  36. Emerson K, Russo RC, Lund RE, Thurston RV (1975) Aqueous ammonia equilibrium calculations: effect of pH and temperature. J Fish Res Board Can 32:2379–2383

    Article  CAS  Google Scholar 

  37. Foltinova P (1987) The effect of gibberellic acid on growth and chlorophyll biosynthesis in Euglena gracilis. Biologia (Bratislava) 42:1091–1095

    CAS  Google Scholar 

  38. Bralczyk J, Wielgat B, Wasilewska-Dabrowska LD, Kleczkowski K (1978) Growth accelerating response of Euglena gracilis Z. to gibberellic acid. Plant Sci Lett 12:265–271

    Article  CAS  Google Scholar 

  39. Fernandez-Valiente E, Rodriguez-Lopez M (1979–1980) Action of indole-acetic acid and gibberellic acid on the paramylon synthesis in Euglena gracilis. Microbiol Espan 32–33: 11–20

  40. Hutner SH, Provasoli L (1951) The phytoflagellates. In: Lwoff A (ed) Biochemistry and Physiology of Protozoa, vol 1. Academic Press, New York, pp 27–128

    Chapter  Google Scholar 

  41. Glucose (or fructose) market price (2014). http://www.alibaba.com/showroom/glucose-syrup-price.html. http://www.alibaba.com/showroom/fructose-syrup-price.html. Accessed 15 Dec 2014

  42. Jasso-Chavez R, Pacheco-Rosales A, Lira-Silva E, Gallardo-Perez JC, Garcia N, Moreno-Sanchez R (2010) Toxic effects of Cr(VI) and Cr(III) on energy metabolism of heterotrophic Euglena gracilis. Aquat Toxicil 100:329–338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support provided by the Ministry of Science, Education and Sports of the Republic of Croatia (Grant No. 058-0581990-2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Božidar Šantek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivušić, F., Šantek, B. Optimization of complex medium composition for heterotrophic cultivation of Euglena gracilis and paramylon production. Bioprocess Biosyst Eng 38, 1103–1112 (2015). https://doi.org/10.1007/s00449-015-1353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1353-3

Keywords

Navigation