Skip to main content
Log in

Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV–Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV–Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 105 ± 1.90 105 cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV–VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mercier SM, Diepenbroek B, Dalm MCF, Wijffels RH, Streeflandb M (2013) Multivariate data analysis as a PAT tool for early bioprocess development data. J Biotechnol 167:262–270

    Article  CAS  Google Scholar 

  2. Lopes JA, Costa PF, Alves TP, Menezes JC (2004) Chemometrics in bioprocess engineering: process analytical technology (PAT) applications. Chemom Intell Lab Syst 74:269–275

    Article  CAS  Google Scholar 

  3. Clementschitsch F, Karl B (2006) Improvement of bioprocess monitoring: development of novel concepts. Microb Cell Fact 5:1–11

    Article  Google Scholar 

  4. Roggo Y, Chalus P, Maurer L, Lema-Martínez C, Edmond A, Jent N (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal 44:683–700

    Article  CAS  Google Scholar 

  5. Glassey J (2013) Multivariate data analysis for advancing the interpretation of bioprocess measurement and monitoring data. In: Mandenius CF, Titchener-Hooker NJ (eds) Measurement, monitoring, modelling and control of bioprocesses. Springer, Berlin, pp 167–191

    Google Scholar 

  6. Xiaobo Z, Jiewen Z, Povey MJW, Holmes M, Hanpin M (2010) Variables selection methods in near-infrared spectroscopy. Anal Chim Acta 667:14–32

    Article  Google Scholar 

  7. Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall International Edition Series, NJ, pp 156–255

    Google Scholar 

  8. Wolf C, Gaida D, Stuhlsatz A, Ludwig T, Loone S, Bongards M (2011) Predicting organic acid concentration from UV/vis spectrometry measurements—a comparison of machine learning techniques. Trans Inst Meas Control 35:5–15

    Article  Google Scholar 

  9. Lavine BK, Blank TR (2009) Feed-forward neural networks. In: Reedijk J (ed) Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, pp 571–586

  10. Rivera EC, Farias Junior F, Atala DIP, Andrade RR, Costa AC, Maciel Filho R (2009) A LabVIEW-based intelligent system for monitoring of bioprocesses. Comput Aided Chem Eng 26:309–314

    Article  CAS  Google Scholar 

  11. Dawson CW, Wilby RL (2001) Hydrological modelling using artificial neural networks. Prog Phys Geogr 25:80–108

    Article  Google Scholar 

  12. Dou Y, Sun Y, Ren Y, Ren Y (2005) Artificial neural network for simultaneous determination of two components of compound paracetamol and diphenhydramine hydrochloride powder on NIR spectroscopy. Anal Chim Acta 528:55–61

    Article  CAS  Google Scholar 

  13. Kumar P, Ghosh S (2014) Application of neural network and genetic algorithm based approaches to bioprocess. In: International conference on issues and challenges in intelligent computing techniques (ICICT 2014). IEEE, Ghaziabad, pp 162–167

    Chapter  Google Scholar 

  14. Eikens B, Karim MN, Simon L (2001) Combining neural networks and first principle models for bioprocess modeling. In: Hussain MA, Mujtaba IM (eds) Application of neural networks and other learning technologies in process engineering. World Scientific, London, pp 121–148

    Chapter  Google Scholar 

  15. De Beer T, Burggraeve A, Fonteyne M, Saerens L, Remon JP, Vervaet C (2011) Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int J Pharm 417:32–47

    Article  Google Scholar 

  16. Teixeira AP, Oliveira R, Alves PM, Carrondo MJT (2009) Advances in on-line monitoring and control of mammalian cell cultures: supporting the PAT initiative. Biotechnol Adv 27:726–732

    Article  CAS  Google Scholar 

  17. Abu-Absi NR, Kenty BM, Cuellar ME, Borys MC, Sakhamuri S, Strachan DJ, Hausladen MC, Li ZJ (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108:1215–1221

    Article  CAS  Google Scholar 

  18. Rathore AS, Bhushan N, Hadpe S (2011) Chemometrics applications in biotech processes: a review. Biotechnol Prog 27:307–315

    Article  CAS  Google Scholar 

  19. Lourenço ND, Lopes JA, Almeida CF, Sarraguça MC, Pinheiro HM (2012) Bioreactor monitoring with spectroscopy and chemometrics: a review. Anal Bioanal Chem 404:1211–1237

    Article  Google Scholar 

  20. Dietmair S, Nielsen LK, Timmins NE (2011) Engineering a mammalian super producer. J Chem Technol Biotechnol 86:905–914

    Article  CAS  Google Scholar 

  21. Croughan MS, Hu WS (2006) From microcarriers to hydrodynamics: introducing engineering science into animal cell culture. Biotechnol Bioeng 95:220–225

    Article  CAS  Google Scholar 

  22. Auniņš JG (2010) Viral vaccine production in cell culture. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York, pp 1–52

    Google Scholar 

  23. Lundstrom K, Schweitzer C, Rotmann D, Hermann D, Schneider EM, Ehrengruber MU (2001) Semliki Forest virus vectors: efficient vehicles for in vitro and in vivo gene delivery. FEBS Lett 504:99–103

    Article  CAS  Google Scholar 

  24. Sandell L, Sakai D (2011) Mammalian cell culture, current protocols essential laboratory techniques. Wiley, New York, pp 4.3.1–4.3.32

  25. Leme J, Fernández-Núñez EG, Parizotto LA, Chagas WA, dos-Santos ES, Caricati ATP, Rezende AG, Costa BLV, Monteiro DCV, Boldorini VLL, Jorge SAC, Astray RM, Pereira CA, Caricati CP, Tonso A (2014) A multivariate calibration procedure for UV/VIS spectrometric monitoring of BHK-21 cell metabolism and growth. Biotechnol Prog 30:241–248

    Article  CAS  Google Scholar 

  26. Augusto EFP, Moraes AM, Piccoli RA, Barral MF, Suazo CA, Tonso A, Pereira CA (2010) Nomenclature and guideline to express the amount of a membrane protein synthesized in animal cells in view of bioprocess optimization and production monitoring. Biologicals 38:105–112

    Article  CAS  Google Scholar 

  27. Fernández-Núñez EG, Leme J, de Almeida Parizotto L, Chagas WA, de Rezende AG, da Costa BLV, Monteiro DCV, Boldorini VLL, Jorge SAC, Astray RM, Pereira CA, Caricati CP, Tonso A (2014) Influence of aeration–homogenization system in stirred tank bioreactors, dissolved oxygen concentration and pH control mode on BHK-21 cell growth and metabolism. Cytotechnology 66:605–617

    Google Scholar 

  28. Haykin S (2001) Redes neurais: princípios e prática, 2nd edn. Porto Alegre, Bookman, pp 183–282

    Google Scholar 

  29. Pons MN, Le Bonté S, Potier O (2004) Spectral analysis and fingerprinting for biomedia characterization. J Biotechnol 113:211–230

    Article  CAS  Google Scholar 

  30. Xu X, Smith S, Urban J, Cui Z (2006) An in line non-invasive optical system to monitor pH in cell and tissue culture. Med Eng Phys 28:468–474

    Article  Google Scholar 

  31. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB (2011) Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 63:1118–1159

    Article  CAS  Google Scholar 

  32. Khataee AR, Dehghan G, Zarei M, Ebadi E, Pourhassan M (2011) Neural network modeling of biotreatment of triphenylmethane dye solution by a green macroalgae. Chem Eng Res Des 89:172–178

    Article  CAS  Google Scholar 

  33. McGovern AC, Ernill R, Kara BV, Kell DB, Goodacre R (1999) Rapid analysis of the expression of heterologous proteins in Escherichia coli using pyrolysis mass spectrometry and Fourier transform infrared spectroscopy with chemometrics: application to α2-interferon production. J Biotechnol 72:157–167

    Article  CAS  Google Scholar 

  34. Hoffman TL (2006) Chapter 3: counting cells, In: Celis JE (eds) Cell biology. A laboratory handbook, vol 1, 3rd edn. Elsevier Inc., Burlington, pp 21–24

Download references

Acknowledgments

The authors would like to thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for post-doctoral fellowship (2010/52521-6) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq: 483009/2010-5) for scientific grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eutimio Gustavo Fernández Núñez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, M.B., Leme, J., Caricati, C.P. et al. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes. Bioprocess Biosyst Eng 38, 1045–1054 (2015). https://doi.org/10.1007/s00449-014-1346-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1346-7

Keywords

Navigation