Skip to main content

Advertisement

Log in

Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Fermentation of xylose-rich and glucose-rich bagasse hydrolysates, obtained from the two-stage acid hydrolysis was studied using the thermotolerant yeast Kluyveromyces sp. IIPE453. The yeast could grow on xylose-rich hydrolysate at 50 °C with the dry cell weight, cell mass yield and maximum specific growth rate of 5.35 g l−1, 0.58 g g−1 and 0.13 h−1, respectively. The yeast was found to be very promising for ethanol as well as xylitol production from the sugars obtained from the lignocellulosic biomass. Batch fermentations of xylose-rich and glucose-rich hydrolysates yielded 0.61 g g−1 xylitol and 0.43 g g−1 ethanol in the broth, respectively based on the sugars present in the hydrolysate. Overall ethanol yield of 165 g (210 ml) and 183 g xylitol per kg of bagasse was obtained, when bagasse hydrolysate was used as a substrate. Utilization of both the glucose and xylose sugars makes the process most economical by producing both ethanol and xylitol based on biorefinery concept. On validating the experimental data of ethanol fermentation, the modified Luong kinetic model for product inhibition as well as inhibition due to inhibitory compounds present in hydrolysate, the model was found to be the best fit for ethanol formation from bagasse hydrolysate using Kluyveromyces sp. IIPE453.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

I :

Concentration of inhibitory compounds (mg l−1)

K′ CM :

Maintenance coefficient (h−1)

K′ d :

Specific death rate (h−1)

K′ I :

Inhibition constant due to inhibitory compounds (mg l−1)

K′ P :

Ethanol inhibition constant for ethanol production (g l−1)

K S :

Saturation constant for cell growth (g l−1)

P :

Product concentration (g l−1)

q p :

Volumetric ethanol productivity (g l−1 h−1)

q s :

Specific sugar consumption rate (g g−1 h−1)

q sp :

Specific productivity (g g−1 h−1)

r P :

Rate of ethanol formation (g l−1 h−1)

r S :

Rate of sugar consumption (g l−1 h−1)

r X :

Rate of cell formation (g l−1 h−1)

S :

Rate limiting substrate concentration (g l−1)

S j :

Variance of error of residues

S o :

Initial substrate concentration (g l−1)

X :

Cell concentration (g l−1)

Y′ P/S :

Yield coefficient for ethanol formation per unit substrate consumed (g g−1)

μ :

Specific growth rate (h−1)

μ m :

Maximum specific growth rate (h−1)

ν:

Specific ethanol production rate (h−1)

νm :

Maximum specific ethanol production rate (h−1)

α, β :

Empirical numbers

\(\overline{\Delta }_{j}\) :

Mean standard deviation

λ :

Error statistic

References

  1. Rivera EC, Costa AC, Andrade RR, Atala DIP, Maugeri F, Filho RM (2007) Development of adaptive modeling techniques to describe the temperature-dependent kinetics of biotechnological processes. Biochem Eng J 36:157–166

    Article  CAS  Google Scholar 

  2. Lin P-Y, Whang L-M, Wu Y-R, Ren W-J, Hsiao C-J, Li S-L, Chang J-S (2007) Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int J Hydrog Energy 32:1728–1735

    Article  CAS  Google Scholar 

  3. Demirbas A (2008) Products from lignocellulosic materials via degradation processes. Energy Sour Part A Recover Utili Environ Eff 30:27–37

    Article  CAS  Google Scholar 

  4. Kadam KL, McMillan JD (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol 88:17–25

    Article  CAS  Google Scholar 

  5. Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329

    Article  CAS  Google Scholar 

  6. Claassen PAM, van Lier JB, Lopez-Cóntreras AM, van Niel EWJ, Sijtsma L, Stams AJM et al (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    Article  CAS  Google Scholar 

  7. Lynd LR, Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Microbiol 16:577–583

    CAS  Google Scholar 

  8. Kemppainen AJ, Shonnard DR (2005) Comparative life-cycle assessments for biomass-to-ethanol production from different regional feedstocks. Biotechnol Prog 21:1075–1084

    Article  CAS  Google Scholar 

  9. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  Google Scholar 

  10. Panagiotou G, Olsson L (2007) Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng 96:250–258

    Article  CAS  Google Scholar 

  11. Yu Z, Zhang H (2004) Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresour Technol 93:199–204

    Article  CAS  Google Scholar 

  12. Vandeska E, Amartey S, Kuzmanova S, Jeffries TW (1996) Fed-batch culture for xylitol production by Candida boidinii. Process Biochem 31:265–270

    Article  CAS  Google Scholar 

  13. Felipe MGA, Vitolo M, Mancilha IM, Silva SS (1997) Fermentation of sugar cane bagasse hemicellulosic hydrolysate for xylitol production: effect of pH. Biomass Bioenergy 13:11–14

    Article  CAS  Google Scholar 

  14. Ko CH, Chiang PN, Chiu PC, Liu CC, Yang CL, Shiau IL (2008) Integrated xylitol production by fermentation of hardwood wastes. J Chem Technol Biotechnol 83:534–540

    Article  CAS  Google Scholar 

  15. Kang HY, Kim YS, Seo JH, Ryu YW (2006) Flocculation of an isolated flocculent yeast, Candida tropicalis HY200, and its application for efficient xylitol production using repeated-batch cultivation. J Microbiol Biotechnol 16:1874–1881

    CAS  Google Scholar 

  16. Tada K, Horiuchi JI, Kanno T, Kobayashi M (2004) Microbial xylitol production from corn cobs using Candida magnoliae. J Biosci Bioeng 98:228–230

    Article  CAS  Google Scholar 

  17. Sampaio FC, de Moraes CA, de Faveri D, Perego P, Converti A, Passos FML (2006) Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii UFV-170. Process Biochem 41:675–681

    Article  CAS  Google Scholar 

  18. Jin YS, Cruz J, Jeffries TW (2005) Xylitol production by a Pichia stipitis d-xylulokinase mutant. Appl Microbiol Biotechnol 68:42–45

    Article  CAS  Google Scholar 

  19. Kumar S, Singh SP, Mishra IM, Adhikari DK (2009) Recent advances in production of bioethanol from lignocellulosic biomass. Chem Eng Technol 32:517–526

    Article  CAS  Google Scholar 

  20. Avci A, Dönmez S (2006) Effect of zinc on ethanol production by two Thermoanaerobacter strains. Process Biochem 41:984–989

    Article  CAS  Google Scholar 

  21. Kumar S, Singh SP, Mishra IM, Adhikari DK (2010) Feasibility of ethanol production with enhanced sugar concentration in bagasse hydrolysate at high temperature using Kluyveromyces sp. IIPE453. Biofuels 1:697–704

    Article  CAS  Google Scholar 

  22. Kumar S, Singh SP, Mishra IM, Adhikari DK (2009) Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453. J Ind Microbiol Biotechnol 36:1483–1489

    Article  CAS  Google Scholar 

  23. Kumar S, Dheeran P, Singh SP, Mishra IM, Adhikari DK (2013) Kinetic studies of ethanol fermentation using Kluyveromyces sp. IIPE453. J Chem Technol Biotechnol 88:1874–1884

    Article  CAS  Google Scholar 

  24. Govindaswamy S, Vane LM (2007) Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Bioresour Technol 98:677–685

    Article  CAS  Google Scholar 

  25. Martínez ML, Sánchez S, Bravo V (2012) Production of xylitol and ethanol by Hansenula polymorpha from hydrolysates of sunflower stalks with phosphoric acid. Ind Crops Prod 40:160–166

    Article  Google Scholar 

  26. Arrizon J, Mateos JC, Sandoval G, Aguilar B, Solis J, Aguilar MG (2012) Bioethanol and xylitol production from different lignocellulosic hydrolysates by sequential fermentation. J Food Process Eng 35:437–454

    Article  CAS  Google Scholar 

  27. de Mancilha IM, Karim MN (2003) Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation. Biotechnol Prog 19:1837–1841

    Article  Google Scholar 

  28. de Carvalho W, Canilha L, Mussatto SI, Dragone G, Morales MLV, Solenzal AIN (2004) Detoxification of sugarcane bagasse hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate-entrapped cells. J Chem Technol Biotechnol 79:863–868

    Article  Google Scholar 

  29. Carvalho W, Santos JC, Canilha L, e Silva JBA, Felipe MGA, Mancilha IM, Silva SS (2004) A study on xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Ca-alginate entrapped cells in a stirred tank reactor. Process Biochem 39:2135–2141

    Article  CAS  Google Scholar 

  30. Boyle M, Barron N, McHale AP (1997) Simultaneous saccharification and fermentation of straw to ethanol using the thermotolerant yeast strain Kluyveromyces marxianus IMB3. Biotechnol Lett 19:49–51

    Article  CAS  Google Scholar 

  31. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848

    Article  CAS  Google Scholar 

  32. Tomás-Pejó E, Oliva JM, González A, Ballesteros I, Ballesteros M (2009) Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel 88:2142–2147

    Article  Google Scholar 

  33. Kang HW, Kim Y, Kim SW, Choi GW (2012) Cellulosic ethanol production on temperature-shift simultaneous saccharification and fermentation using the thermostable yeast Kluyveromyces marxianus CHY1612. Bioprocess Biosyst Eng 35:115–122

    Article  CAS  Google Scholar 

  34. Krishnan MS, Ho NWY, Tsao GT (1999) Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400 (pLNH33). Appl Microbiol Biotechnol 77–79:373–388

    Google Scholar 

  35. Arellano-Plaza M, Herrera-López EJ, Díaz-Montaño DM, Moran A, Ramírez-Córdova JJ (2007) Unstructured kinetic model for tequila batch fermentation. Int J Math Comput Simul 1:1–6

    Article  Google Scholar 

  36. Ge XM, Bai FW (2006) Intrinsic kinetics of continuous growth and ethanol production of a flocculating fusant yeast strain SPSC01. J Biotechnol 124:363–372

    Article  CAS  Google Scholar 

  37. Cheng KK, Cai BY, Zhang JA, Ling HZ, Zhou YJ, Ge JP, Xu JM (2008) Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem Eng J 38:105–109

    Article  CAS  Google Scholar 

  38. Cheng KK, Ge JP, Zhang JA, Ling HZ, Zhou YJ, Yang MD, Xu JM (2007) Fermentation of pretreated sugarcane bagasse hemicellulose hydrolysate to ethanol by Pachysolen tannophilus. Biotechnol Lett 29:1051–1055

    Article  CAS  Google Scholar 

  39. Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendόn JS, Rivera-Hernández KN, González-César RA, Plascencia-Espinosa MA, Trejo-Estrada SR (2009) Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour Technol 100:1238–1245

    Article  Google Scholar 

  40. Carrasco C, Baudel HM, Sendelius J, Modig T, Roslander C, Galbe M et al (2010) SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse. Enzyme Microbial Technol 46:64–73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. M.O. Garg, Director IIP, Dehradun for his valuable suggestion and encouragement to carry out this research work. One of the authors (Sachin Kumar) gratefully acknowledges Senior Research Fellowship awarded by Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Dheeran, P., Singh, S.P. et al. Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess Biosyst Eng 38, 39–47 (2015). https://doi.org/10.1007/s00449-014-1241-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1241-2

Keywords

Navigation