Skip to main content

Advertisement

Log in

Ethanol production from sunflower meal biomass by simultaneous saccharification and fermentation (SSF) with Kluyveromyces marxianus ATCC 36907

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The lignocellulosic materials are considered promising renewable resources for ethanol production, but improvements in the processes should be studied to reduce operating costs. Thus, the appropriate enzyme loading for cellulose saccharification is critical for process economics. This study aimed at evaluating the concentration of cellulase and β-glucosidase in the production of bioethanol by simultaneous saccharification and fermentation (SSF) of sunflower meal biomass. The sunflower biomass was pretreated with 6 % H2SO4 (w/v), at 121 °C, for 20 min, for hemicellulose removal and delignificated with 1 % NaOH. SSF was performed with Kluyveromyces marxianus ATCC 36907, at 38 °C, 150 rpm, for 72 h, with different enzyme concentrations (Cellulase Complex NS22086-10, 15 and 20 FPU/gsubstrate and β-Glucosidase NS22118, with a cellulase to β-glucosidase ratio of 1.5:1; 2:1 and 3:1). The best condition for ethanol production was cellulase 20 FPU/gsubstrate and β-glucosidase 13.3 CBU/gsubstrate, resulting in 27.88 g/L ethanol, yield of 0.47 g/g and productivity of 0.38 g/L h. Under this condition the highest enzymatic conversion of cellulose to glucose was attained (87.06 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ewanick SM, Thompson WJ, Marquardt BJ, Bura R (2013) Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy. Biotechnol Biofuels 6:1–8

    Article  Google Scholar 

  2. Fernandes S, Murray P (2010) Metabolic engineering for improved microbial pentose fermentation. Bioeng Bugs 1:424–428

    Article  Google Scholar 

  3. Bajwa PK, Pinel D, Martin VJ, Trevors JT, Lee H (2010) Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. J Microbiol Methods 81:179–186

    Article  CAS  Google Scholar 

  4. Bellido C, González-Benito G, Coca M, Lucas S, García-Cubero MT (2013) Influence of aeration on bioethanol production from ozonized wheat straw hydrolysates using Pichia stipitis. Bioresour Technol 133:51–58

    Article  CAS  Google Scholar 

  5. Dagnino EP, Chamorro ER, Romano SD, Felissia FE, Area MC (2013) Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Ind Crop Prod 42:363–368

    Article  CAS  Google Scholar 

  6. Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M (2002) Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol 25:184–192

    Article  Google Scholar 

  7. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117

    Article  CAS  Google Scholar 

  8. Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L (2008) Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 100:1122–1131

    Article  Google Scholar 

  9. Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:1–14

    Article  Google Scholar 

  10. Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74:7514–7524

    Article  CAS  Google Scholar 

  11. Ballesteros I, Ballesteros M, Cabañas A, Carrasco J, Martin C, Negro MJ, Saez F, Saez R (1991) Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Appl Biochem Biotechnol 28–29:307–315

    Article  Google Scholar 

  12. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Proc Biochem 39:1843–1848

    Article  CAS  Google Scholar 

  13. Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367–3374

    Article  CAS  Google Scholar 

  14. Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354

    Article  CAS  Google Scholar 

  15. Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi Limtong S, Kosaka T, Yamada M (2011) Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 90:1573–1586

    Article  CAS  Google Scholar 

  16. Fonseca GG, Carvalho NM, Gombert AK (2013) Growth of the yeast Kluyveromyces marxianus CBS 6556 on different sugar combinations as sole carbon and energy source. Appl Microbiol Biotechnol 97:5055–5067

    Article  CAS  Google Scholar 

  17. Lindedam J, Bruun S, Jorgensen H, Felby C, Magid J (2010) Cellulosic ethanol: interactions between cultivar and enzyme loading in wheat straw processing. Biotechnol Biofuels 3:1–10

    Article  Google Scholar 

  18. Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2:707–738

    CAS  Google Scholar 

  19. Luo P, Liu Z (2010) Bioethanol production based on simultaneous saccharification and fermentation of wheat straw. Int Conf Chall Environ Sci Comput Eng 2:48–51

    Google Scholar 

  20. Pessani NK, Atiyeh HK, Wilkins MR, Bellmer DD, Banat IM (2011) Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings. Bioresour Technol 102:10618–10624

    Article  CAS  Google Scholar 

  21. Madrid LM, Quintero-Diaz JC (2011) Ethanol production from paper sludge using Kluyveromyces Marxianus. Dyna Rev Fac Nac Minas 78:185–191

    Google Scholar 

  22. USDA, United States Department of Agriculture (2013) Oilseeds: world markets and trade. http://www.fas.usda.gov/oilseeds/Current/. Accessed 10 Nov 2013

  23. Rab M, Schein C, Matthaus B (2008) Virgin sunflower oil. Eur J Lipid Sci Technol 110:618–624

    Article  Google Scholar 

  24. Bonos E, Christaki E, Florou-Paneri P (2011) The sunflower oil and the sunflower meal in animal nutrition (In Greek). J Hell Vet Med Soc 62:58–70

    Google Scholar 

  25. National Sunflower Association (2014) Sunflower statistics. http://www.sunflowernsa.com/stats/world-supply. Accessed 08 April 2014

  26. Xu J, Chen Y, Cheng JJ, Sharma-Shivappa RR, Burns J (2011) Delignification of switchgrass cultivars for bioethanol production. Bioresources 6:707–720

    CAS  Google Scholar 

  27. Gouveia ER, Nascimento RT, Souto-Maior AM, Rocha GJM (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quím Nova 32:1500–1503

    Article  CAS  Google Scholar 

  28. Johnson CM, Ulrich A (1959) Analytical methods for use in plant analysis. University of California, California

    Google Scholar 

  29. APHA, American Public Health Association (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

  30. Canilha L, Santos VT, Rocha GJ, Almeida-Silva JB, Giulietti M, Silva SS, Felipe MG, Ferraz A, Milagres AM, Carvalho W (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38:1467–1475

    Article  CAS  Google Scholar 

  31. Bellido C, Bolado S, Coca M, Lucas S, Gonzáles-Benito G, García-Cubero MT (2011) Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour Technol 102:10868–10874

    Article  CAS  Google Scholar 

  32. Tippayawong N, Chanhom N (2011) Conversion of bamboo to sugars by dilute acid and enzymatic hydrolysis. Int J Renew Energy Res 1:240–244

    Google Scholar 

  33. Kamireddy SR, Schaefer C, Defrese M, Degenstein J, Ji Y (2012) Pretreatment and enzymatic hydrolysis of sunflower hulls for fermentable sugar production. Int J Agric Biol Eng 5:62–70

    CAS  Google Scholar 

  34. Téllez-Luis SJ, Ramírez JA, Vázquez M (2002) Mathematical modeling of hemicellulosic sugar production from sorghum straw. J Food Eng 52:285–291

    Article  Google Scholar 

  35. Linde M, Jakobsson EL, Galbe M, Zacchi G (2008) Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy 32:326–332

    Article  CAS  Google Scholar 

  36. Petersson A, Thomsen MH, Hauggaard-Nielsen H, Thomsen AB (2007) Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31:812–819

    Article  CAS  Google Scholar 

  37. Saura-Calixto F, Cañellas J, Garcia-Raso J (1983) Determination of hemicellulose, cellulose and lignin contents of dietary fibre and crude fibre of several seed hulls. Data comparison. Z Lebensm Unters Forsch 177:200–202

    Article  Google Scholar 

  38. Demirbas A (2006) Effect of temperature on pyrolysis products from four nut shells. J Anal Appl Pyrolysis 76:285–289

    Article  CAS  Google Scholar 

  39. Tabil L, Adapa P, Kashaninejad M (2011) In: Bernardes MAS (ed) Biomass feedstock pre-processing—part 1: pre-treatment. Biofuel’s Engineering Process Technology, InTech, New York

    Google Scholar 

  40. Gowda NK, Ramana JV, Prasad CS, Singh K (2004) Micronutrient content of certain tropical conventional and unconventional feed resources of Southern India. Trop Anim Health Prod 36:77–94

    Article  CAS  Google Scholar 

  41. Liu H, Zhu Y, Fu SY (2010) Effects of lignin–metal complexation on enzymatic hydrolysis of cellulose. J Agric Food Chem 58:7233–7238

    Article  CAS  Google Scholar 

  42. Aziz S, Shah FA, Rehman-Memon HU, Soomro SA, Bano A, Rajoka MI (2011) Hyper production of ethanol from cane molasses at optimized agitational intensity using indigenous thermotolerant Kluyveromyces marxianus. Aust J Basic Appl Sci 5:750–754

    CAS  Google Scholar 

  43. Wilkins MR, Mueller M, Eichling S, Banat I (2008) Fermentation of xylose by the thermotolerant yeast strains Kluyveromyces marxianus IMB2, IMB4, and IMB5 under anaerobic conditions. Process Biochem 43:346–350

    Article  CAS  Google Scholar 

  44. Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Meness NO, Banat IM (2008) Simultaneous saccharification and fermentation of Kanlow switchgrass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnol Bioenergy 1:894–902

    Article  Google Scholar 

  45. Lark N, Xia Y, Qin C, Gong CS, Tsao GT (1997) Production of ethanol from recycled paper sludge using cellulase and yeast Kluyveromyces marxianus. Biomass Bioenergy 12:135–143

    Article  CAS  Google Scholar 

  46. Santos JRA, Lucena MS, Gusmão NB, Gouveia ER (2012) Optimization of ethanol production by Saccharomyces cerevisiae UFPEDA 1238 in simultaneous saccharification and fermentation of delignified sugarcane bagasse. Ind Crop Prod 36:584–588

    Article  CAS  Google Scholar 

  47. Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    Article  CAS  Google Scholar 

  48. Vriesekoop F, Haass C, Pamment NB (2009) The role of acetaldehyde and glycerol in the adaptation to ethanol stress of Saccharomyces cerevisiae and other yeasts. FEMS Yeast Res 9:365–371

    Article  CAS  Google Scholar 

  49. Fonseca GG, Gombert AK, Heinzle E, Wittmann C (2007) Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res 7:422–435

    Article  CAS  Google Scholar 

  50. Deenanath EV, Rumbold K, Iyuke S (2013) The production of bioethanol from cashew apple juice by batch fermentation using Saccharomyces cerevisiae Y2084 and Vin13. ISRN Renew Energy 2013:1–11

    Article  Google Scholar 

  51. Mueller M, Wilkins MR, Banat IM (2011) Production of xylitol by the thermotolerant Kluyveromyces marxianus IMB strains. J Bioprocess Biotechnol 1:102

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the company Caramuru SA for having provided the sunflower meal and Brazilian National Research Council (CNPq) and Itaipu Technological Park (PTI) for the master grant awarded to Danielle Camargo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Camargo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, D., Gomes, S.D. & Sene, L. Ethanol production from sunflower meal biomass by simultaneous saccharification and fermentation (SSF) with Kluyveromyces marxianus ATCC 36907. Bioprocess Biosyst Eng 37, 2235–2242 (2014). https://doi.org/10.1007/s00449-014-1201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1201-x

Keywords

Navigation