Skip to main content
Log in

Effect of simultaneous nitrification and denitrification on nitrogen removal performance and filamentous microorganism diversity of a full-scale MBR plant

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The nutrient removal performance of a membrane bioreactor (MBR) plant treating the wastewater of 10,000 PE was investigated with dynamic simulations. The average process performance with respect to chemical oxygen demand and total nitrogen were reported to be 97 and 81 %, respectively. The modeling study showed that low dissolved oxygen (DO) levels (0.2–0.3 mgO2/L) due to limited aeration capacity within aeration tank that provided additional total nitrogen removal of 15–20 mgN/L. Simultaneous nitrification and denitrification process was found to be the reason of performance increase. However, low DO levels <0.3 mgO2/L in the aeration tank triggered the proliferation of filamentous microorganisms within one month as a side effect. In this respect, the morphotypes of Type 0092 and Nocardia (Gordonia) amarae were found to be excessively abundant in the MBR system. Overflow of foam layer covering the tanks was frequently reported during bulking period. A hypochloride dosing of 4.5 gCL/kgMLSS/day was applied to get over filamentous bulking problem as a short term action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Judd S (2006) The MBR book: principles and applications of membrane bioreactors in water and wastewater treatment. Elsevier, Amsterdam

    Google Scholar 

  2. Orhon D, Artan N (1994) Modelling of activated sludge systems. Technomic, Lancaster

    Google Scholar 

  3. ATV131 (2000) Dimensioning of single stage activated sludge plants. GFA Publishing Company of ATV-DVWK Water, Wastewater and Waste, Hennef ISBN: 3-935669-82-8

    Google Scholar 

  4. Metcalf and Eddy (2003) Wastewater engineering: treatment, disposal and reuse. Mc Graw Hill, New York

    Google Scholar 

  5. Barker PS, Dold PL (1997) General model for biological nutrient removal activated-sludge systems: model presentation. Wat Env Res 69(5):969–984

    Article  CAS  Google Scholar 

  6. Henze M, Gujer W, Mino T, van Loosdrecht MCM (2000) Activated sludge models: ASM1, ASM2, ASM2d and ASM3, scientific and technical report no: 9. IWA Publishing, London

    Google Scholar 

  7. Naessens W, Maere T, Nopens I (2012) Critical review of membrane bioreactor models––part 1: biokinetic and filtration models. Biores Technol 122(SI):107–118

    Article  CAS  Google Scholar 

  8. Manser R, Gujer W, Siegrist H (2005) Consequences of mass transfer effects on the kinetics of nitrifiers. Wat Res 39(19):4633–4642

    Article  CAS  Google Scholar 

  9. Hocaoglu SM, Insel G, Ubay Cokgor E, Orhon D (2011) Effect of sludge age on simultaneous nitrification and denitrification in membrane bioreactor. Biores Techno 102(12):6665–6672

    Article  CAS  Google Scholar 

  10. Insel G, Hocaoglu SM, Ubay Cokgor E, Orhon D (2011) Modelling the effect of biomass induced oxygen transfer limitations on the nitrogen removal performance of membrane bioreactor. J Membr Sci 368:54–63

    Article  CAS  Google Scholar 

  11. Sarioglu M, Insel G, Artan N, Orhon D (2009) Model evaluation of simultaneous nitrification and denitrification in a membrane bioreactor operated without an anoxic reactor. J Membr Sci 337:17–27

    Article  CAS  Google Scholar 

  12. Sarioglu M, Insel G, Artan N, Orhon D (2009) Effect of biomass concentration on the performance and modeling of nitrogen removal for membrane bioreactors. J Environ Sci Heal Part A 44(8):733–743

    Article  CAS  Google Scholar 

  13. Manser R, Gujer W, Hansruedi S (2005) Consequences of mass transfer effects on the kinetics of nitrifiers. Water Res 39:4633–4642

    Article  CAS  Google Scholar 

  14. Jiang T, Sin G, Spanjers H, Nopens I, Kennedy MD, van der Meer W, Futselaar H, Amy G, Vanrolleghem PA (2009) Comparison of modeling approach between membrane bioreactor and conventional activated sludge processes. Wat Environ Res 81(4):342–440

    Article  Google Scholar 

  15. Applegate CS, Wilder B, Deshaw JR (1980) Total nitrogen removal in a multi-channel oxidation systems. J Wat Pollut Cont Fed 52(3):568–577

    CAS  Google Scholar 

  16. Ekama GA, Wentzel MC, Casey TG, GvR Marais (1996) Filamentous organism bulking in nutrient removal activated sludge systems. Paper 6: review evaluation and consolidation of results. Wat SA 22(2):147–151

    CAS  Google Scholar 

  17. Germain E, Nelles F, Drews A, Pearce P, Kraume M, Reid E, Judd SJ, Stephenson T (2007) Biomass effects on oxygen transfer in membrane bioreactors. Wat Res 41:1038–1044

    Article  CAS  Google Scholar 

  18. Meng F, Chae SR, Drewsc A, Kraumec M, Shind HS, Yanga F (2009) Review, recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Wat Res 43:1489–1512

    Article  CAS  Google Scholar 

  19. Jenkins D, Richard MG, Daigger GT (1993) Manual on the causes and control of activated sludge bulking and foaming, 2nd edn. Lewis Publishers, Inc., Michigan

    Google Scholar 

  20. Su Y, Zhang Y, Zhou X, Jiang M (2013) Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor. J Environ Sci 25(9):1736–1744

    Article  CAS  Google Scholar 

  21. Bitton G (1994) Wastewater microbiology. John Wiley and Sons Publishing, New York

    Google Scholar 

  22. Casey TG, Wentzel MC, Ekama GA (1999) Filamentous organism bulking in nutrient removal activated sludge systems. Paper 11. A biochemical/microbiological model for proliferation of anoxic-aerobic (AA) filamentous organisms. Wat SA 25(4):443–451

    CAS  Google Scholar 

  23. Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM (2009) Nitrous oxide emission during wastewater treatment. Wat Res 43(17):4093–4103

    Article  CAS  Google Scholar 

  24. Martins AMP, Pagilla K, Heijnen JJ, van Loosdrecht MCM (2004) Filamentous bulking sludge-a critical review. Wat Res 38:793–817

    Article  CAS  Google Scholar 

  25. Vanrolleghem PA, Insel G, Petersen B, Sin G, De Pauw D, Nopens I, Dovermann H, Weijers S, Gernaey K (2003) A comprehensive model calibration procedure for activated sludge models, WEFTEC 2003, 76th annual technical exhibition and conference, Los Angeles, California, USA, 11–15 October 2003

  26. Roeleveld PJ, van Loosdrecht MCM (2002) Experiences with guidelines for wastewater characterization in the Netherlands. Wat Sci Tech 45(6):77–87

    CAS  Google Scholar 

  27. Insel G, Guder B, Gunes G, Ubay Cokgor E (2012) Are standard wastewater treatment plant design methods suitable for any municipal wastewater? Wat Sci Tech 66(2):328–335

    Article  CAS  Google Scholar 

  28. Eikelboom DH (1975) Filamentous organisms observed in activated sludge. Wat Res 9:365–388

    Article  Google Scholar 

  29. Eikelboom DH (1977) Identification of filamentous organisms in bulking activated sludge. Prog Wat Technol 8:153–162

    Google Scholar 

  30. Eikelboom DH (2000) Process control of activated sludge plants by microscopic investigation. IWA Publishing, London

    Google Scholar 

  31. Sezgin M, Jenkins D, Parker DS (1978) A unified theory of filamentous activated sludge bulking. J Wat Pol Cont Fed 50:362–381

    CAS  Google Scholar 

  32. Krampe J, Krauth K (2003) Oxygen transfer into activated sludge with high MLSS concentrations. Wat Sci Technol 47(11):297–303

    CAS  Google Scholar 

  33. Racault Y, Stricker AE, Husson A, Gillot S (2009) Effect of mixed liquor suspended solids on the oxygen transfer rate in full scale membrane bioreactors. WEFTEC2009, Water Environment Federation, Florida, USA

  34. Tian Y, Su X, Chen L, Jiang T (2010) Impact of organic loading rate and DO on filamentous bulking sludge and the study of its characteristics in membrane bioreactor. Adv Mat Res 113–114:1280–1284

    Article  Google Scholar 

  35. Wilen BM, Balmer P (1999) The effect of dissolved oxygen concentration on the structure, size, and size distribution of activated sludge flocs. Wat Res 33(2):391–400

    Article  CAS  Google Scholar 

  36. Nowak G, Brown G, Yee A (1986) Effects of feed pattern and dissolved oxygen on growth of filamentous bacteria. J Wat Poll Cont Fed 58(10):978–984

    CAS  Google Scholar 

  37. Gaval G, Pernelle JJ (2003) Impact of the repetition of oxygen deficiencies on the filamentous bacteria proliferation in activated sludge. Wat Res 37:1991–2000

    Article  CAS  Google Scholar 

  38. Carr EL, Eales KL, Seviour RJ (2006) Substrate uptake by Gordonia amarae in activated sludge foams by FISH-MAR. Wat Sci Technol 54(1):39–45

    Article  CAS  Google Scholar 

  39. Lechevalier MP, Lechevalier HA (1974) Nocardia amarae sp. Nov., an actinomycete common in foaming activated sludge. Int J Syst Bacteriol 24:278–288

    Article  Google Scholar 

  40. Wang Z, Wang P, Wang Q, Wu Z, Zhou Q, Yang D (2010) Effective control of membrane fouling by filamentous bacteria in a submerged membrane bioreactor. Chem Eng J 158:608–615

    Article  CAS  Google Scholar 

  41. Cosenza A, Di Bella G, Mannina G, Torregrossa M (2013) The role of EPS in fouling and foaming phenomena for a membrane bioreactor. Biores Technol 147:184–192

    Article  CAS  Google Scholar 

  42. Ovez S, Ors C, Murat S, Orhon D (2006) Effect of hypochloride on microbial ecology of bulking and foaming activated sludge treatment for tannery wastewater. J Environ Sci Health Part A 41(10):2163–2174

    Article  CAS  Google Scholar 

  43. Ni BJ, Yuan Z, Chandran K, Vanrolleghem PA, Murthy S (2013) Evaluating four mathematical models for nitrous oxide production by autotrophic ammonia-oxidizing bacteria. Biotechnol Bioeng 110(1):153–163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Bodrum Konacık Municipality is kindly acknowledged for sharing the MBR data. The authors are also thankful to MBR plant personnel, Mr. Güven Semet and Mr. Orhan Gök for the discussions on plant data and operation strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman Övez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Insel, G., Erol, S. & Övez, S. Effect of simultaneous nitrification and denitrification on nitrogen removal performance and filamentous microorganism diversity of a full-scale MBR plant. Bioprocess Biosyst Eng 37, 2163–2173 (2014). https://doi.org/10.1007/s00449-014-1193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1193-6

Keywords

Navigation