Skip to main content
Log in

Swainsonine, a novel fungal metabolite: optimization of fermentative production and bioreactor operations using evolutionary programming

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The optimization of bioreactor operations towards swainsonine production was performed using an artificial neural network coupled evolutionary program (EP)-based optimization algorithm fitted with experimental one-factor-at-a-time (OFAT) results. The effects of varying agitation (300–500 rpm) and aeration (0.5–2.0 vvm) rates for different incubation hours (72–108 h) were evaluated in bench top bioreactor. Prominent scale-up parameters, gassed power per unit volume (P g/V L, W/m3) and volumetric oxygen mass transfer coefficient (K L a, s−1) were correlated with optimized conditions. A maximum of 6.59 ± 0.10 μg/mL of swainsonine production was observed at 400 rpm-1.5 vvm at 84 h in OFAT experiments with corresponding P g/VL and K L a values of 91.66 W/m3 and 341.48 × 10−4 s−1, respectively. The EP optimization algorithm predicted a maximum of 10.08 μg/mL of swainsonine at 325.47 rpm, 1.99 vvm and 80.75 h against the experimental production of 7.93 ± 0.52 μg/mL at constant K L a (349.25 × 10−4 s−1) and significantly reduced P g/V L (33.33 W/m3) drawn by the impellers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

OFAT:

One-factor-at-a-time

EP:

Evolutionary programming/evolutionary program

N :

Agitation rate (rpm)

Q :

Aeration rate (vvm)

P g :

Gassed power requirement (W)

P g/V L :

Gassed power required per unit volume (W/m3)

K L a :

Volumetric oxygen mass transfer coefficient (s−1)

F g :

Gas flow rate (m3/s)

V g :

Gas superficial velocity (m/s)

W i :

Impeller blade width (m)

N i :

Rotations per second (rps)

g :

Acceleration due to gravity (m/s2)

D i :

Impellers diameter (m)

D t :

Tank diameter (m)

τ av :

Average shear stress (N/m2)

γ av :

Average shear rate (s−1)

µ a :

Apparent viscosity according to Ostwald de-Waele model (Pa s)

µ g :

Gas viscosity (Pa s)

η eff :

Eddy length (m)

References

  1. Thompson AJ, Williams RJ, Hakki Z, Alonzi DS, Wennekes T, Gloster TM, Songsrirote K, Thomas-Oates JE, Wrodnigg TM, Spreitz J, Stütz AE, Butters TD, Williams SJ, Daviesa GJ (2012) Structural and mechanistic insight into N-glycan processing by endo-α-mannosidase. PNAS 109:781–786

    Article  CAS  Google Scholar 

  2. Nemr AE (2000) Synthetic methods for the stereoisomers of swainsonine and its analogues (2000). Tetrahedron 56:8579–8629

    Article  Google Scholar 

  3. Patrick MS, Adlard MW, Keshavarz T (1993) Production of an indolizidine alkaloid, swainsonine by the filamentous fungus, Metarhizium anisopliae. Biotechnol Lett 15:997–1000

    Article  CAS  Google Scholar 

  4. Patrick MS, Adlard MW, Keshavarz T (1995) Swainsonine production in fed batch fermentations of Metarhizium anisopliae. Biotechnol Lett 17:433–438

    Article  CAS  Google Scholar 

  5. Patrick MS, Adlard MW, Keshavarz T (1996) Swainsonine production from batch cultures of Metarhizium anisopliae in stirred-tank reactors. Enzyme Microb Technol 18:428–432

    Article  CAS  Google Scholar 

  6. Tamerler C, Adlard MW, Keshavarz T (1997) Production of swainsonine from Metarhizium anisopliae in stirred-tank and air-lift reactors. Biotechnol Lett 19:919–922

    Article  Google Scholar 

  7. Tamerler C, Ullah M, Adlard MW, Keshavarz T (1998) Effect of pH on physiology of Metarhizium anisopliae for production of swainsonine. FEMS Microbiol Lett 168:17–23

    Article  CAS  Google Scholar 

  8. Tamerler C, Keshavarz T (1999) Optimization of agitation for production of swainsonine from Metarhizium anisopliae in stirred tank and airlift reactors. Biotechnol Lett 21:501–504

    Article  CAS  Google Scholar 

  9. Jafari AR, Sarrafzadeh MH, Alemzadeh I, Vosoughi M (2007) Effect of stirrer speed and aeration rate on the production of glucose oxidase by Aspergillus niger. J Biol Sci 7:270–275

    Article  CAS  Google Scholar 

  10. Zafar M, Kumar S, Kumar S, Dhiman AK (2012) Modelling and optimization of poly (3 hydroxybutyrate co-3 hydroxyvalerate) production from cane molasses by Azohydromonas lata MTCC 2311 in a stirred-tank reactor: effect of agitation and aeration regimes. J Ind Microbiol Biotechnol 39:987–1001

    Article  CAS  Google Scholar 

  11. Abdul-Rahman OA, Munetomo M, Akama K (2013) An adaptive parameter binary-real coded genetic algorithm for constraint optimization problems: performance analysis and estimation of optimal control parameters. Inf Sci 233:54–86

    Article  Google Scholar 

  12. Soni P, Kansal H, Banerjee UC (2007) Optimization of process parameters for the production of carbonyl reductase by Candida viswanathii in a laboratory-scale fermentor. J Ind Microbiol Biotechnol 35:167–173

    Article  Google Scholar 

  13. Singh D, Kaur G (2013) Real encoded genetic algorithm and response surface methodology to optimize production of an indolizidine alkaloid, swainsonine, from Metarhizium anisopliae. Folia Microbiol 58:393–401

    Article  CAS  Google Scholar 

  14. Sim KL, Perry D (1995) Swainsonine production by Metarhizium anisopliae determined by means of an enzymatic assay. Mycol Res 99:1078–1082

    Article  CAS  Google Scholar 

  15. Fox JD, Robyt JF (1991) Miniaturization of three carbohydrate analyses using micro sample plate reader. Anal Biochem 195:93–96

    Article  CAS  Google Scholar 

  16. Hughmark GA (1980) Power requirements and interfacial area in gas–liquid turbine agitated systems. Ind Eng Chem Proc Des Dev 19:638–641

    Article  CAS  Google Scholar 

  17. Bandhyopadhyay B, Humphrey AE (1967) Dynamic measurement of the volumetric oxygen transfer coefficient in fermentation systems. Biotechnol Bioeng 9:533–544

    Article  Google Scholar 

  18. Ogut A, Hatch RT (1988) Oxygen transfer into Newtonian and non-Newtonian fluids in mechanically agitated vessels. Can J Chem Eng 66:79–85

    Article  CAS  Google Scholar 

  19. Singh D, Kaur G (2012) Optimization of different process variables for the production of an indolizidine alkaloid, swainsonine from Metarhizium anisopliae. J Basic Microbiol 52:590–597

    Article  CAS  Google Scholar 

  20. Young E, Sun-Mi Lee, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3:24–36

    Article  Google Scholar 

  21. Olmos E, Mehmood N, Haj Husein L, Goergen JL, Fick M, Delaunay S (2013) Effects of bioreactor hydrodynamics on the physiology of Streptomyces. Bioprocess Biosyst Eng 36:259–272

    Article  CAS  Google Scholar 

  22. Garcia-Ochoa F, Gomez Castro E, Santos VE (2000) Oxygen transfer and uptake rates during xanthan gum production. Enzyme Microb Technol 27:680–690

    Article  CAS  Google Scholar 

  23. Shin AS, Hong MS, Lee J (1996) Oxygen transfer correlation in high cell density culture of recombinant E. coli. Biotechnol Tech 10:679–682

    Article  Google Scholar 

  24. Wang DIC, Cooney CL, Demain AL, Dunnill P, Humphrey AE, Lilly MD (1979) Aeration and agitation. In: Fermentation and enzyme technology, Chapt 9. Wiley, New York, pp 157–193

  25. Gavrilescu M, Roman RV, Efimov V (1993) The volumetric oxygen mass transfer coefficient in antibiotic biosynthesis liquids. Acta Biotechnol 13:59–70

    Article  CAS  Google Scholar 

  26. Vilaca PR, Badino AC Jr, Facciotti MCR, Schmidell W (2000) Determination of power consumption and volumetric oxygen transfer coefficient in bioreactors. Bioprocess Eng 22:261–265

    Article  CAS  Google Scholar 

  27. Linek V, Kordac M, Fujasova M, Moucha T (2004) Gas–liquidmass transfer coefficient in stirred tanks interpreted through models of idealised eddy structure of turbulence in the bubble vicinity. Chem Eng Process 43:1511–1517

    Article  CAS  Google Scholar 

  28. Moo-Young M, Blanch HW (1981) Design of biochemical reactors: mass transfer criteria for simple and complex systems. Adv Biochem Eng 19:1–69

    CAS  Google Scholar 

  29. van’t Riet K (1979) Review of measuring methods and results in non viscous gas–liquid mass transfer in stirred vessels. Ind Eng Chem Process Des Dev 18:357–364

    Article  Google Scholar 

  30. Benchapattarapong N, Anderson WA, Bai F, Moo-Young M (2005) Rheology and hydrodynamic properties of Tolypocladium inflatum fermentation broth and its simulation. Bioprocess Biosyst Eng 27:239–247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Indian Institute of Technology Guwahati for providing the experimental facilities and Council of Scientific and Industrial research (CSIR), PUSA, New Delhi, India, for providing the research fellowship. The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurvinder Kaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D., Kaur, G. Swainsonine, a novel fungal metabolite: optimization of fermentative production and bioreactor operations using evolutionary programming. Bioprocess Biosyst Eng 37, 1599–1607 (2014). https://doi.org/10.1007/s00449-014-1132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1132-6

Keywords

Navigation