Skip to main content
Log in

Stable operation of microbial fuel cells at low temperatures (5–10 °C) with light exposure and its anodic microbial analysis

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Performances of microbial fuel cells (MFCs) were studied at 5–10 and 25–30 °C. Results showed stable operation of the MFCs at low temperatures with only slight reductions of voltage and power generation (11 versus 14 % for double-chamber MFC, while 14 versus 21 % for single-chamber MFC, 1,000 Ω) compared to those at mesophilic temperatures. MFCs operated at low temperatures showed lower COD removal rates accompanied by higher coulombic efficiencies (CEs). PCR-DGGE analysis revealed that psychrotrophic microbes (mainly Arcobacter, Pseudomonas, and Geobacter) dominated on anodes of the MFCs at low temperatures. Interestingly, light-induced red substances appeared on anode of the MFCs operated at low temperature and were proven to be the main anodic microbes (Arcobacter and Pseudomonas). Co-existence of the aforementioned microbes could assist stable low-temperature operation of the MFCs. Cyclic voltammetry analysis supported the results of the CE and DGGE. Stable performance of MFCs at low temperatures might be achieved by the control of anodic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CE:

Coulombic efficiency

CV:

Cyclic voltammetry

DGGE:

Denaturing gradient gel electrophoresis

MFC:

Microbial fuel cell

PEM:

Proton exchange membrane

PCR:

Polymerase chain reaction

SCE:

Saturated calomel electrode

References

  1. Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292

    Article  CAS  Google Scholar 

  2. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    Article  CAS  Google Scholar 

  3. Logan BE (2007) Microbial Fuel Cells. John Wiley & Sons, New Jersey, pp 86–94

    Book  Google Scholar 

  4. Moon H, Chang IS, Kim BH (2006) Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresour Technol 97:621–627

    Article  CAS  Google Scholar 

  5. Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour Technol 101:469–475

    Article  CAS  Google Scholar 

  6. Jadhav GS, Ghangrekar MM (2008) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol 100:717–723

    Article  CAS  Google Scholar 

  7. Min B, Roman OB, Angelidaki I (2008) Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnol Lett 30:1213–1218

    Article  CAS  Google Scholar 

  8. Reimers CE, Girguis P, Stecher HA III, Tender LM, Ryckelynck N, Whaling P (2006) Microbial fuel cell energy from an ocean cold seep. Geobiology 4:123–136

    Article  CAS  Google Scholar 

  9. Scott K, Cotlarciuc I, Head I, Katuri KP, Hall D, Lakeman JB, Browning D (2008) Fuel cell power generation from marine sediments: investigation of cathode materials. J Chem Technol Biotechnol 83:1244–1254

    Article  CAS  Google Scholar 

  10. Hong SW, Chang IS, Choi YS, Chung TH (2009) Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresour Technol 100:3029–3035

    Article  CAS  Google Scholar 

  11. Larrosa-Guerrero A, Scott K, Head IM, Mateo F, Ginesta A, Godinez C (2010) Effect of temperature on the performance of microbial fuel cells. Fuel 89:3985–3994

    Article  CAS  Google Scholar 

  12. Cheng S, Xing D, Logan BE (2011) Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens Bioelectron 26:1913–1917

    Article  CAS  Google Scholar 

  13. Liu L, Tsyganova O, Lee DJ, Su A, Chang JS, Wang A, Ren N (2012) Anodic biofilm in single-chamber microbial fuel cells cultivated under different temperatures. Int J Hydrogen Energy 37:15792–15800

    Article  CAS  Google Scholar 

  14. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Article  CAS  Google Scholar 

  15. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  CAS  Google Scholar 

  16. APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

  17. Patil SA, Harnisch F, Kapadnis B, Schroder U (2010) Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosens Bioelectron 26:803–808

    Article  CAS  Google Scholar 

  18. Liu H, Cheng S, Logan BE (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493

    Article  CAS  Google Scholar 

  19. Grady CP, Daigger GT, Lim HC (1999) Biological wastewater treatment. Marcel Dekker, New York, pp 109–112

    Google Scholar 

  20. Cheng S, Liu H, Logan BE (2006) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8:489–494

    Article  CAS  Google Scholar 

  21. Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880

    Article  CAS  Google Scholar 

  22. He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40:5212–5217

    Article  CAS  Google Scholar 

  23. Liang P, Huang X, Fan MZ, Cao XX, Wang C (2007) Composition and distribution of internal resistance in three types of microbial fuel cells. Appl Microbiol Biotechnol 77:551–558

    Article  CAS  Google Scholar 

  24. Kim JR, Jung SH, Regan JM, Logan BE (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 98:2568–2577

    Article  CAS  Google Scholar 

  25. Bohn I, Bjarnsson L, Mattiasson B (2007) Effect of temperature decrease on the microbial population and process performance of a mesophilic anaerobic bioreactor. Environ Technol 28:943–952

    Article  CAS  Google Scholar 

  26. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  27. Ishii S, Hotta Y, Watanabe K (2008) Methanogenesis versus electrogenesis: morphological and Phylogenetic comparisons of microbial communities. Biosci Biotechnol Biochem 72:286–294

    Article  CAS  Google Scholar 

  28. He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39:5262–5267

    Article  CAS  Google Scholar 

  29. Xing D, Cheng S, Regan JM, Logan BE (2009) Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosens Bioelectron 25:105–111

    Article  CAS  Google Scholar 

  30. Vandamme P, Dewhirst FE, Paster BJ, On SLW (2005) Bergey’s manual of systematic bacteriology, 2nd edn. Springer-Verlag Publishers, New York

    Google Scholar 

  31. Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    Article  CAS  Google Scholar 

  32. Holmes DE, Nicoll JS, Bond DR, Lovley DR (2004) Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol 70:6023–6030

    Article  CAS  Google Scholar 

  33. Sharma V, Kundu PP (2010) Biocatalysts in microbial fuel cells. Enzyme Microb Technol 47:179–188

    Article  CAS  Google Scholar 

  34. Mohan SV, Mohanakrishna G, Sarma PN (2008) Effect of anodic metabolic function on bioelectricity generation and substrate degradation in single chambered microbial fuel cell. Environ Sci Technol 42:8088–8094

    Article  CAS  Google Scholar 

  35. Pocaznoi D, Erable B, Etcheverry L, Delia M-L, Bergel A (2012) Towards an engineering-oriented strategy for building microbial anodes for microbial fuel cells. Phys Chem Chem Phys 14:13332–13343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (No. 30920130122007), the National Natural Science Foundation of China (No. 50978136, 51208258 and 51378261), the Natural Science Foundation of Jiangsu Province (No. BK2011717), and the Major Project of Water Pollution Control and Management Technology of China (No. 2012ZX 07101-003-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianjun Wang or Hongqiang Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Shen, J., Wang, L. et al. Stable operation of microbial fuel cells at low temperatures (5–10 °C) with light exposure and its anodic microbial analysis. Bioprocess Biosyst Eng 37, 819–827 (2014). https://doi.org/10.1007/s00449-013-1054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1054-8

Keywords

Navigation