Skip to main content

Advertisement

Log in

Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A potential glycolipid biosurfactant producer Streptomyces sp. MAB36 was isolated from marine sediment samples. Medium composition and culture conditions for the glycolipid biosurfactant production by Streptomyces sp. MAB36 were optimized, using two statistical methods: Plackett–Burman design was applied to find out the key ingredients and conditions for the best yield of glycolipid biosurfactant production and central composite design was used to optimize the concentration of the four significant variables, starch, casein, crude oil and incubation time. Fructose and yeast extract were the best carbon and nitrogen sources for the production of the glycolipid biosurfactant. Biochemical characterizations including FTIR and MS studies suggested the glycolipid nature of the biosurfactant. The isolated glycolipid biosurfactant reduced the surface tension of water from 73.2 to 32.4 mN/m. The purified glycolipid biosurfactant showed critical micelle concentrations of 36 mg/l. The glycolipid biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and NaCl concentration. The purified glycolipid biosurfactant showed strong antimicrobial activity. Thus, the strain Streptomyces sp. MAB36 has proved to be a potential source of glycolipid biosurfactant that could be used for the bioremediation processes in the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chandrasekaran E, BeMiller JN, Song-Chiau DL (1978) Isolation, partial characterization, and biological properties of polysaccharides from crude papain. Carbohydr Res 60:105–115

    Article  CAS  Google Scholar 

  2. Bushnell L, Haas H (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41:653–673

    CAS  Google Scholar 

  3. Givskov M, Östling J, Eberl L, Lindum PW, Christensen AB, Christiansen G, Molin S, Kjelleberg S (1998) Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:742–745

    CAS  Google Scholar 

  4. Karanth N, Deo P, Veenanadig N (1999) Microbial production of biosurfactants and their importance. Cur Sci 77:116–126

    CAS  Google Scholar 

  5. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  6. Kiran GS, Thomas TA, Selvin J (2010) Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation. Colloids Surf B 78:8–16

    Article  CAS  Google Scholar 

  7. Banat IM, Makkar RS, Cameotra S (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  Google Scholar 

  8. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Cur Opin Biotechnol 13:249–252

    Article  CAS  Google Scholar 

  9. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dyecontaining effluents: a review. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  10. Kokare C, Kadam S, Mahadik K, Chopade B (2007) Studies on bioemulsifier production from marine Streptomyces sp. S1. Indian J Biotechnol 6:78–84

    CAS  Google Scholar 

  11. Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219

    Article  CAS  Google Scholar 

  12. Joshi S, Bharucha C, Desai AJ (2008) Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour Technol 99:4603–4608

    Article  CAS  Google Scholar 

  13. Chakraborty S, Khopade A, Biao R, Jian W, Liu XY, Mahadik K, Chopade B, Zhang L, Kokare C (2011) Characterization and stability studies on surfactant, detergent and oxidant stable α-amylase from marine haloalkaliphilic Saccharopolyspora sp. A9. J Mol Catal B Enzym 68:52–58

    Article  CAS  Google Scholar 

  14. Menezes Bento F, de Oliveira Camargo FA, Okeke BC, Frankenberger WT (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 160:249–255

    Article  CAS  Google Scholar 

  15. Williams S, Davies F (1967) Use of a scanning electron microscope for the examination of actinomycetes. J Gen Microbiol 48:171–177

    Article  CAS  Google Scholar 

  16. Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347

    Article  CAS  Google Scholar 

  17. Seghal Kiran G, Anto Thomas T, Selvin J, Sabarathnam B, Lipton A (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101:2389–2396

    Article  CAS  Google Scholar 

  18. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Article  Google Scholar 

  19. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  Google Scholar 

  20. Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A (2008) Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223:143–151

    Article  CAS  Google Scholar 

  21. Ilori M, Amobi C, Odocha A (2005) Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61:985–992

    Article  CAS  Google Scholar 

  22. Chakraborty S, Khopade A, Kokare C, Mahadik K, Chopade B (2009) Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. J Mol Catal B Enzym 58:17–23

    Article  CAS  Google Scholar 

  23. Ghojavand H, Vahabzadeh F, Roayaei E, Shahraki AK (2008) Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). J Colloid Interface Sci 324:172–176

    Article  CAS  Google Scholar 

  24. Gnanamani A, Kavitha V, Radhakrishnan N, Sekaran G, Rajakumar GS, Mandal A (2010) Microbial biosurfactants and hydrolytic enzymes mediates in situ development of stable supra-molecular assemblies in fatty acids released from triglycerides. Colloids Surf B 78:200–207

    Article  CAS  Google Scholar 

  25. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    CAS  Google Scholar 

  26. Gudiña EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B 76:298–304

    Article  CAS  Google Scholar 

  27. Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analytical Chem 28:350–356

    Article  CAS  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  29. Folch JM, Lees M, Stanly HS (1956) A simple method for the isolation and quantification of total lipids from animal tissues. J Biol Chem 226:497–509

    Google Scholar 

  30. Cunha C, Do Rosario M, Rosado A, Leite S (2004) Serratia sp. SVGG16: a promising biosurfactant producer isolated from tropical soil during growth with ethanol-blended gasoline. Process Biochem 39:2277–2282

    Article  CAS  Google Scholar 

  31. Carrillo P, Mardaraz C, Pitta-Alvarez S, Giulietti A (1996) Isolation and selection of biosurfactant-producing bacteria. World J Microbiol Biotechnol 12:82–84

    Article  CAS  Google Scholar 

  32. Gandhimathi R, Seghal Kiran G, Hema T, Selvin J, Rajeetha Raviji T, Shanmughapriya S (2009) Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10. Bioprocess Biosyst Eng 32:825–835

    Article  CAS  Google Scholar 

  33. Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA (2009) An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf B 69:183–193

    Article  CAS  Google Scholar 

  34. Khopade A, Biao R, Liu XY, Mahadik K, Zhang L, Kokare C (2011) Production and characterization of biosurfactant from marine Streptomyces species B3. J Colloid Interface Sci 367:311–318

    Article  CAS  Google Scholar 

  35. Bonilla M, Olivaro C, Corona M, Vazquez A, Soubes M (2005) Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol 98:456–463

    Article  CAS  Google Scholar 

  36. Abu-Ruwaida A, Banat I, Haditirto S, Salem A, Kadri M (1991) Isolation of biosurfactant-producing bacteria, product characterization, and evaluation. Acta Biotechnol 11:315–324

    Article  CAS  Google Scholar 

  37. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  Google Scholar 

  38. Manocha M, San-Blas G, Centeno S (1980) Lipid composition of Paracoccidioides brasiliensis: possible correlation with virulence of different strains. J General Microbiol 117:147–154

    CAS  Google Scholar 

  39. Rashedi H, Jamshidi E, Assadi MM, Bonakdarpour B (2005) Isolation and production of biosurfactant from Pseudomonas aeruginosa isolated from Iranian southern wells oil. Int J Environ Sci Technol 2:121–127

    Article  CAS  Google Scholar 

  40. Prieto L, Michelon M, Burkert J, Kalil S, Burkert C (2008) The production of rhamnolipid by a Pseudomonas aeruginosa strain isolated from a southern coastal zone in Brazil. Chemosphere 71:1781–1785

    Article  CAS  Google Scholar 

  41. Tsuge K, Ano T, Shoda M (1996) Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8. Arch Microbiol 165:243–251

    Article  CAS  Google Scholar 

  42. Peypoux F, Bonmatin J, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  CAS  Google Scholar 

  43. Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol 99:195–199

    Article  CAS  Google Scholar 

  44. Deziel E, Paquette G, Villemur R, Lepine F, Bisaillon J (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912

    CAS  Google Scholar 

  45. Rahman K, Rahman TJ, McClean S, Marchant R, Banat IM (2008) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Progress 18:1277–1281

    Article  CAS  Google Scholar 

  46. Mukherjee AK, Das K (2006) Correlation between diverse cyclic lipopeptides production and regulation of growth and substrate utilization by Bacillus subtilis strains in a particular habitat. FEMS Microbiol Ecol 54:479–489

    Article  CAS  Google Scholar 

  47. Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2008) Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J Microbiol Biotechnol 24:917–925

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Marine Bioprocess Research Center of the Marine Biotechnology Program funded by the Ministry of Oceans and Fisheries, Republic of Korea. One of the authors, Kannan Sivakumar expresses his thanks to the Director, Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences and Annamalai University authorities for facilities and encouragement. Authors also thank Prof. L. Kannan, Former Vice-chancellor of Thiruvalluvar University, for critically going through the manuscript and offering comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manivasagan, P., Sivasankar, P., Venkatesan, J. et al. Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36. Bioprocess Biosyst Eng 37, 783–797 (2014). https://doi.org/10.1007/s00449-013-1048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1048-6

Keywords

Navigation